We consider the following classical autonomous variational problem
Keywords: nonconvex variational problems, autonomous variational problems, existence of minimizers, Dubois-Reymond necessary condition, relaxation
@article{COCV_2011__17_1_222_0,
author = {Cupini, Giovanni and Marcelli, Cristina},
title = {Monotonicity properties of minimizers and relaxation for autonomous variational problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {222--242},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {1},
doi = {10.1051/cocv/2010001},
mrnumber = {2775194},
zbl = {1213.49028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010001/}
}
TY - JOUR AU - Cupini, Giovanni AU - Marcelli, Cristina TI - Monotonicity properties of minimizers and relaxation for autonomous variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 222 EP - 242 VL - 17 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010001/ DO - 10.1051/cocv/2010001 LA - en ID - COCV_2011__17_1_222_0 ER -
%0 Journal Article %A Cupini, Giovanni %A Marcelli, Cristina %T Monotonicity properties of minimizers and relaxation for autonomous variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 222-242 %V 17 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010001/ %R 10.1051/cocv/2010001 %G en %F COCV_2011__17_1_222_0
Cupini, Giovanni; Marcelli, Cristina. Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242. doi: 10.1051/cocv/2010001
[1] , and , Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 142 (1989) 301-316. | Zbl | MR
[2] , Measure Theory, Volume I. Springer-Verlag, Berlin, Germany (2007). | Zbl | MR
[3] and , Existence of solutions for a variational problem associated to models in optimal foraging theory. J. Math. Anal. Appl. 147 (1990) 263-276. | Zbl | MR
[4] and , Existence and nonexistence results for noncoercive variational problems and applications in ecology. J. Differ. Equ. 85 (1990) 214-235. | Zbl | MR
[5] and , A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations. Ann. Inst. Henri Poincaré, Anal. non linéaire 8 (1991) 197-223. | Zbl | MR | Numdam
[6] and , Existence of minimizers for nonconvex, noncoercive simple integrals. SIAM J. Control Optim. 41 (2002) 1118-1140. | Zbl | MR
[7] , The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions. Trans. Amer. Math. Soc. 356 (2004) 415-426. | Zbl | MR
[8] and , Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Ann. Inst. Henri Poincaré, Anal. non linéaire 20 (2003) 911-919. | Zbl | MR | Numdam
[9] , and , On the minimum problem for a class of non-coercive functionals. J. Differ. Equ. 127 (1996) 225-262. | Zbl | MR
[10] , Optimization: theory and applications. Springer-Verlag, New York, USA (1983). | Zbl | MR
[11] , An indirect method in the calculus of variations. Trans. Amer. Math. Soc. 336 (1993) 655-673. | Zbl | MR
[12] , and , Necessary conditions and non-existence results for autonomous nonconvex variational problems. J. Differ. Equ. 243 (2007) 329-348. | Zbl | MR
[13] , Direct methods in the Calculus of Variations, Applied Mathematical Sciences 78. Second edition, Springer, Berlin, Germany (2008). | Zbl | MR
[14] and , Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations. Appl Math Optim. 48 (2003) 39-66. | Zbl | MR
[15] , and , On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, VIII. Ser. 74 (1983) 274-282. | Zbl | MR | EuDML
[16] and , Convex analysis and variational problems, Studies in Mathematics and its Applications 1. North Holland, Amsterdam, The Netherlands (1976). | Zbl | MR
[17] , and , Existence of minimizers for some nonconvex one-dimensional integrals. Port. Math. 55 (1998) 167-185. | Zbl | MR | EuDML
[18] and , Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering 46. Academic Press, New York-London (1968). | Zbl | MR
[19] , Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers. SIAM J. Control Optim. 40 (2002) 1473-1490. | Zbl | MR
[20] , Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints. Trans. Amer. Math. Soc. 360 (2008) 5201-5227. | Zbl | MR
[21] , Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità. Rend. Mat. Appl. 13 (1980) 271-281. | Zbl
[22] , Existence of scalar minimizers for nonconvex simple integrals of sum type. J. Math. Anal. Appl. 221 (1998) 559-573. | Zbl | MR
[23] , Existence and regularity for scalar minimizers of affine nonconvex simple integrals. Nonlinear Anal. 53 (2003) 441-451. | Zbl | MR
[24] , Existence of scalar minimizers for simple convex integrals with autonomous Lagrangian measurable on the state variable. Nonlinear Anal. 67 (2007) 2485-2496. | Zbl | MR
[25] , Existence and uniqueness results for minimization problems with nonconvex functionals. J. Optim. Theory Appl. 82 (1994) 571-592. | Zbl | MR
Cité par Sources :





