In this paper we construct upper bounds for families of functionals of the form
Keywords: gamma-convergence, micromagnetics, non-local energy
@article{COCV_2010__16_4_856_0,
author = {Poliakovsky, Arkady},
title = {Upper bounds for a class of energies containing a non-local term},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {856--886},
year = {2010},
publisher = {EDP Sciences},
volume = {16},
number = {4},
doi = {10.1051/cocv/2009022},
mrnumber = {2744154},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2009022/}
}
TY - JOUR AU - Poliakovsky, Arkady TI - Upper bounds for a class of energies containing a non-local term JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 856 EP - 886 VL - 16 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2009022/ DO - 10.1051/cocv/2009022 LA - en ID - COCV_2010__16_4_856_0 ER -
%0 Journal Article %A Poliakovsky, Arkady %T Upper bounds for a class of energies containing a non-local term %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 856-886 %V 16 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2009022/ %R 10.1051/cocv/2009022 %G en %F COCV_2010__16_4_856_0
Poliakovsky, Arkady. Upper bounds for a class of energies containing a non-local term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 856-886. doi: 10.1051/cocv/2009022
[1] , and , Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM: COCV 8 (2002) 31-68. | Zbl | Numdam
[2] , and , Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). | Zbl
[3] , , and , Recent analytical developments in micromagnetics, in The Science of Hysteresis 2, G. Bertotti and I. Mayergoyz Eds., Elsevier Academic Press (2005) 269-381. | Zbl
[4] and , Magnetic domains. Springer (1998).
[5] and , Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. | Zbl
[6] , Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. 9 (2007) 1-43.
[7] , Sharp upper bounds for a singular perturbation problem related to micromagnetics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (2007) 673-701. | Zbl | Numdam
[8] , A general technique to prove upper bounds for singular perturbation problems. J. Anal. Math. 104 (2008) 247-290. | Zbl
[9] , On a variational approach to the Method of Vanishing Viscosity for Conservation Laws. Adv. Math. Sci. Appl. 18 (2008) 429-451. | Zbl
[10] and , Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294-338. | Zbl
[11] and , Compactness, kinetic formulation and entropies for a problem related to mocromagnetics. Comm. Partial Differential Equations 28 (2003) 249-269. | Zbl
Cité par Sources :





