@article{ASENS_1999_4_32_6_859_0,
author = {Burns, Keith and Wilkinson, Amie},
title = {Stable ergodicity of skew products},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {859--889},
year = {1999},
publisher = {Elsevier},
volume = {Ser. 4, 32},
number = {6},
doi = {10.1016/s0012-9593(00)87721-6},
mrnumber = {2000g:37030},
zbl = {0942.37015},
language = {en},
url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)87721-6/}
}
TY - JOUR AU - Burns, Keith AU - Wilkinson, Amie TI - Stable ergodicity of skew products JO - Annales scientifiques de l'École Normale Supérieure PY - 1999 SP - 859 EP - 889 VL - 32 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(00)87721-6/ DO - 10.1016/s0012-9593(00)87721-6 LA - en ID - ASENS_1999_4_32_6_859_0 ER -
%0 Journal Article %A Burns, Keith %A Wilkinson, Amie %T Stable ergodicity of skew products %J Annales scientifiques de l'École Normale Supérieure %D 1999 %P 859-889 %V 32 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(00)87721-6/ %R 10.1016/s0012-9593(00)87721-6 %G en %F ASENS_1999_4_32_6_859_0
Burns, Keith; Wilkinson, Amie. Stable ergodicity of skew products. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 32 (1999) no. 6, pp. 859-889. doi: 10.1016/s0012-9593(00)87721-6
[AKS] , and , Stably ergodic skew products, Discrete and Continuous Dynamical Systems, Vol. 2, 1996, pp. 349-350. | Zbl | MR
[B1] , Topological transitivity of one class of dynamical systems and flows of frames on manifolds of negative curvature, Func. Anal. Appl., Vol. 9, 1975, no. 1, pp. 9-19. | Zbl | MR
[B2] , The topology of group extensions of C systems, Mat. Zametki, Vol. 18, 1975, no. 3, pp. 453-465. | Zbl | MR
[BP] and , Partially hyperbolic dynamical systems, Math. USSR Izvestija, Vol. 8, 1974, no. 1, pp. 177-218. | Zbl
[BPW] , and , Stable ergodicity and Anosov flows, to appear in Topology. | Zbl
[CE] and , Comparison Theorems in Riemannian Geometry, North Holland/American Elsevier, 1975. | Zbl | MR
[FP] and , Stable ergodicity of skew extensions by compact Lie groups, Topology, Vol. 38, 1999, No 1, pp. 167-187. | Zbl | MR
[GPS] , and , Stably ergodic diffeomorphisms, Ann. Math., Vol. 140, 1994, pp. 295-329. | Zbl | MR
[H] , Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. | Zbl | MR
[HPS] , and , Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, 1977. | Zbl | MR
[Hu] , Homotopy Theory, Academic Press, 1959. | Zbl | MR
[Hum] , Introduction to Lie Algebras and Representation Theory, Springer Verlag, 1972. | Zbl | MR
[J] , A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, Vol. 4, 1988, no. 2, pp. 187-193. | Zbl | MR
[KK] and , Cocycles' stability for partially hyperbolic systems, Math. Res. Lett., Vol. 3, 1996, no. 2, pp. 191-210. | Zbl | MR
[Ma1] , There are no new Anosov diffeomorphisms on tori, Amer. J. Math., Vol. 96, 1974, pp. 422-429. | Zbl | MR
[Ma2] , Anosov diffeomorphisms on nilmanifolds, Proc. Amer. Math. Soc., Vol. 38, 1973, pp. 423-426. | Zbl | MR
[Mi] , Morse Theory, Princeton University Press, 1969.
[N] , Lie Groups and Differential Geometry, Mathematical Society of Japan, 1956. | Zbl | MR
[P] , Entropy and Generators in Ergodic Theory, W. A. Benjamin, Inc. 1969. | Zbl | MR
[PP] and , Stability of mixing for toral extensions of hyperbolic systems, Tr. Mat. Inst. Steklova, Vol. 216, 1997, Din. Sist. i Smezhnye Vopr., pp. 354-363. | Zbl | MR
[PS1] and , Stably ergodic dynamical systems and partial hyperbolicity, J. of Complexity, Vol. 13, 1997, pp. 125-179. | Zbl | MR
[PS2] and , Stable ergodicity and julienne quasiconformality, September, 1997 preprint.
[R] , Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math., Vol. 34, 1978, pp. 36-60. | Zbl | MR
[Wa] , Stable ergodic properties of cocycles over hyperbolic attractors, 1997 preprint.
[Wi] , Stable ergodicity of the time one map of a geodesic flow, Ergod. Th. and Dynam. Syst., Vol. 18, 1998, no. 6, pp. 1545-1588. | Zbl | MR
[Y] , On an arcwise connected subgroup of a Lie group, Osaka Math. J., Vol. 2, 1950, pp. 13-14. | Zbl | MR
Cité par Sources :





