In this paper, we establish some combinatorial identities involving harmonic numbers via the package Sigma, by which we confirm some conjectural congruences of Z.-W. Sun. For example, for any prime , we have
Nous montrons ici, à l'aide du progiciel Sigma, quelques identités combinatoires faisant intervenir les nombres harmoniques. Nous établissons ainsi des congruences conjecturées par Z.-W. Sun. Par exemple, pour premier, on a
Accepted:
Published online:
@article{CRMATH_2019__357_10_756_0, author = {Mao, Guo-Shuai and Wang, Chen and Wang, Jie}, title = {Symbolic summation methods and congruences involving harmonic numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {756--765}, publisher = {Elsevier}, volume = {357}, number = {10}, year = {2019}, doi = {10.1016/j.crma.2019.10.005}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2019.10.005/} }
TY - JOUR AU - Mao, Guo-Shuai AU - Wang, Chen AU - Wang, Jie TI - Symbolic summation methods and congruences involving harmonic numbers JO - Comptes Rendus. Mathématique PY - 2019 SP - 756 EP - 765 VL - 357 IS - 10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2019.10.005/ DO - 10.1016/j.crma.2019.10.005 LA - en ID - CRMATH_2019__357_10_756_0 ER -
%0 Journal Article %A Mao, Guo-Shuai %A Wang, Chen %A Wang, Jie %T Symbolic summation methods and congruences involving harmonic numbers %J Comptes Rendus. Mathématique %D 2019 %P 756-765 %V 357 %N 10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2019.10.005/ %R 10.1016/j.crma.2019.10.005 %G en %F CRMATH_2019__357_10_756_0
Mao, Guo-Shuai; Wang, Chen; Wang, Jie. Symbolic summation methods and congruences involving harmonic numbers. Comptes Rendus. Mathématique, Volume 357 (2019) no. 10, pp. 756-765. doi : 10.1016/j.crma.2019.10.005. https://www.numdam.org/articles/10.1016/j.crma.2019.10.005/
[1] Note on some congruences of Lehmer, J. Number Theory, Volume 129 (2009) no. 8, pp. 1813-1819
[2] New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2014) no. 6, pp. 3131-3159
[3] Two congruences involving harmonic numbers with applications, Int. J. Number Theory, Volume 12 (2016) no. 2, pp. 527-539
[4] Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers, J. Number Theory, Volume 179 (2017), pp. 88-96
[5] Proof of some congruences conjectured by Z.-W. Sun, Int. J. Number Theory, Volume 13 (2017), pp. 1983-1993
[6] Gaussian hypergeometric series and supercongruences, Math. Comput., Volume 78 (2009), pp. 275-292
[7] Symbolic summation assists combinatorics, Sémin. Lothar. Comb., Volume 56 (2007)
[8] Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math., Volume 105 (2000), pp. 193-223
[9] Congruences involving Bernoulli and Euler numbers, J. Number Theory, Volume 128 (2008) no. 2, pp. 280-312
[10] Super congruences and Euler numbers, Sci. China Math., Volume 54 (2011), pp. 2509-2535
[11] p-adic congruences motivated by series, J. Number Theory, Volume 134 (2014), pp. 181-196
[12] A new series for and related congruences, Internat. J. Math., Volume 26 (2015) no. 8
[13] Arithmetic theory of harmonic numbers (II), Colloq. Math., Volume 130 (2013) no. 1, pp. 67-78
[14] Supercongruences related to involving harmonic numbers, Int. J. Number Theory, Volume 14 (2018) no. 4, pp. 1093-1109
[15] On certain properties of prime numbers, Q. J. Math., Volume 5 (1862), pp. 35-39
[16] Some curious congruences modulo primes, J. Number Theory, Volume 130 (2010) no. 4, pp. 930-935
Cited by Sources: