[Sur les métriques d'Einstein invariantes à gauche, qui ne sont pas à orbites géodésiques]
In this article, we prove that compact simple Lie groups () admit at least two left-invariant Einstein metrics that are not geodesic orbit, which gives a positive answer to a problem recently posed by Nikonorov.
Dans cette Note, nous démontrons que les groupes de Lie simples, compacts, () admettent au moins deux métriques d'Einstein invariantes à gauche, dont des géodésiques maximales ne sont pas des orbites de sous-groupes à un paramètre du groupe d'isométries complet. Ceci répond par l'affirmative à une question récemment posée par Nikonorov.
Accepté le :
Publié le :
Xu, Na 1 ; Tan, Ju 1
@article{CRMATH_2019__357_7_624_0,
author = {Xu, Na and Tan, Ju},
title = {On left-invariant {Einstein} metrics that are not geodesic orbit},
journal = {Comptes Rendus. Math\'ematique},
pages = {624--628},
year = {2019},
publisher = {Elsevier},
volume = {357},
number = {7},
doi = {10.1016/j.crma.2019.07.003},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2019.07.003/}
}
TY - JOUR AU - Xu, Na AU - Tan, Ju TI - On left-invariant Einstein metrics that are not geodesic orbit JO - Comptes Rendus. Mathématique PY - 2019 SP - 624 EP - 628 VL - 357 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2019.07.003/ DO - 10.1016/j.crma.2019.07.003 LA - en ID - CRMATH_2019__357_7_624_0 ER -
%0 Journal Article %A Xu, Na %A Tan, Ju %T On left-invariant Einstein metrics that are not geodesic orbit %J Comptes Rendus. Mathématique %D 2019 %P 624-628 %V 357 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2019.07.003/ %R 10.1016/j.crma.2019.07.003 %G en %F CRMATH_2019__357_7_624_0
Xu, Na; Tan, Ju. On left-invariant Einstein metrics that are not geodesic orbit. Comptes Rendus. Mathématique, Tome 357 (2019) no. 7, pp. 624-628. doi: 10.1016/j.crma.2019.07.003
[1] Einstein metrics on compact Lie groups which are not naturally reductive, Geom. Dedic., Volume 160 (2012) no. 1, pp. 261-285
[2] Compact simple Lie groups admitting left invariant Einstein metrics that are not geodesic orbit, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2018), pp. 81-84
[3] Non-naturally reductive Einstein metrics on the compact simple Lie group , Ann. Glob. Anal. Geom., Volume 46 (2014), pp. 103-115
[4] Non-naturally reductive Einstein metrics on exceptional Lie groups, J. Geom. Phys., Volume 116 (2017), pp. 152-186
[5] Riemannian manifolds with homogeneous geodesic, Boll. Unione Mat. Ital., B (7), Volume 5 (1991) no. 1, pp. 189-246
[6] On left invariant Einstein Riemannian metrics that are not geodesic orbit, Transform. Groups, Volume 24 (2019) no. 2, pp. 511-530
[7] Homogeneous Einstein–Randers metrics on symplectic groups, J. Math. Anal. Appl., Volume 472 (2019), pp. 1902-1913
[8] Einstein metrics on compact simple Lie groups attached to standard triples, Trans. Amer. Math. Soc., Volume 369 (2017), pp. 8587-8605
[9] New non-naturally reductive Einstein metrics on SO(n), Int. J. Math., Volume 29 (2018)
Cité par Sources :





