[Sur la condition d'Ozaki pour qu'une fonction soit p-valuée]
Let f be an analytic function in a convex domain . A well-known theorem of Ozaki states that if f is analytic in D, and is given by for , and
Soit f une fonction analytique dans un domaine . Un théorème bien connu d'Ozaki affirme que, si f est analytique dans D, donnée par pour et
Accepté le :
Publié le :
Nunokawa, Mamoru 1 ; Sokół, Janusz 2 ; Thomas, Derek K. 3
@article{CRMATH_2018__356_4_382_0,
author = {Nunokawa, Mamoru and Sok\'o{\l}, Janusz and Thomas, Derek K.},
title = {On {Ozaki's} condition for \protect\emph{p}-valency},
journal = {Comptes Rendus. Math\'ematique},
pages = {382--386},
year = {2018},
publisher = {Elsevier},
volume = {356},
number = {4},
doi = {10.1016/j.crma.2018.02.007},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2018.02.007/}
}
TY - JOUR AU - Nunokawa, Mamoru AU - Sokół, Janusz AU - Thomas, Derek K. TI - On Ozaki's condition for p-valency JO - Comptes Rendus. Mathématique PY - 2018 SP - 382 EP - 386 VL - 356 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2018.02.007/ DO - 10.1016/j.crma.2018.02.007 LA - en ID - CRMATH_2018__356_4_382_0 ER -
%0 Journal Article %A Nunokawa, Mamoru %A Sokół, Janusz %A Thomas, Derek K. %T On Ozaki's condition for p-valency %J Comptes Rendus. Mathématique %D 2018 %P 382-386 %V 356 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2018.02.007/ %R 10.1016/j.crma.2018.02.007 %G en %F CRMATH_2018__356_4_382_0
Nunokawa, Mamoru; Sokół, Janusz; Thomas, Derek K. On Ozaki's condition for p-valency. Comptes Rendus. Mathématique, Tome 356 (2018) no. 4, pp. 382-386. doi: 10.1016/j.crma.2018.02.007
[1] On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap., Volume 2 (1934–1935) no. 1, pp. 129-135
[2] A note on multivalent functions, Tsukuba J. Math., Volume 13 (1989) no. 2, pp. 453-455
[3] On properties of non-Carathéodory functions, Proc. Jpn. Acad., Ser. A, Volume 68 (1992) no. 6, pp. 152-153
[4] On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A., Volume 2 (1935), pp. 167-188
[5] On close to-convex functions, Trans. Amer. Math. Soc., Volume 114 (1965) no. 1, pp. 176-186
[6] On certain univalent mapping, J. Math. Soc. Jpn., Volume 11 (1959), pp. 72-75
[7] Multivalently close-to-convex functions, Proc. Amer. Math. Soc., Volume 8 (1957) no. 5, pp. 869-874
[8] On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc., Volume 38 (1935), pp. 310-340
Cité par Sources :





