Following Isaacs (see [6, p. 94]), we call a normal subgroup N of a finite group G large, if , so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.
Suivant la terminologie introduite par Isaacs (voir [6], p. 94), nous disons qu'un sous-groupe distingué N d'un groupe fini G est grand si , de sorte que N est d'indice borné dans G. Notre but principal est d'établir des résultats permettant de produire de façon systématique des grands sous-groupes dans les groupes finis (voir les théorèmes A et C). Nous considérons également les problèmes plus particuliers qui se posent pour trouver de grands sous-groupes nilpotents (non commutatifs) ainsi que de grands sous-groupes commutatifs dans les groupes résolubles.
Accepted:
Published online:
@article{CRMATH_2018__356_3_253_0, author = {Aivazidis, Stefanos and M\"uller, Thomas W.}, title = {Large subgroups in finite groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--257}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2018.01.020/} }
TY - JOUR AU - Aivazidis, Stefanos AU - Müller, Thomas W. TI - Large subgroups in finite groups JO - Comptes Rendus. Mathématique PY - 2018 SP - 253 EP - 257 VL - 356 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2018.01.020/ DO - 10.1016/j.crma.2018.01.020 LA - en ID - CRMATH_2018__356_3_253_0 ER -
%0 Journal Article %A Aivazidis, Stefanos %A Müller, Thomas W. %T Large subgroups in finite groups %J Comptes Rendus. Mathématique %D 2018 %P 253-257 %V 356 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2018.01.020/ %R 10.1016/j.crma.2018.01.020 %G en %F CRMATH_2018__356_3_253_0
Aivazidis, Stefanos; Müller, Thomas W. Large subgroups in finite groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 253-257. doi : 10.1016/j.crma.2018.01.020. https://www.numdam.org/articles/10.1016/j.crma.2018.01.020/
[1] On residuals of finite groups, 2017 | arXiv
[2] Finite Soluble Groups, de Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992
[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8, 2017.
[4] Über die Φ-Untergruppe endlicher Gruppen, Math. Z., Volume 58 (1953), pp. 160-170
[5] On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3), Volume 6 (1956), pp. 1-42
[6] Finite Group Theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, USA, 2008
Cited by Sources: