[Une estimée raffinée du degré topologique]
We sharpen an estimate of [4] for the topological degree of continuous maps from a sphere into itself in the case . This provides the answer for to a question raised by Brezis. The problem is still open for .
Nous affinons une estimée du degré topologique pour des applications continues d'une sphère dans elle-même dans le cas . Cela fournit la réponse pour à une question posée par Brezis. Le problème est encore ouvert pour .
Accepté le :
Publié le :
Nguyen, Hoai-Minh 1
@article{CRMATH_2017__355_10_1046_0,
author = {Nguyen, Hoai-Minh},
title = {A refined estimate for the topological degree},
journal = {Comptes Rendus. Math\'ematique},
pages = {1046--1049},
year = {2017},
publisher = {Elsevier},
volume = {355},
number = {10},
doi = {10.1016/j.crma.2017.10.007},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2017.10.007/}
}
TY - JOUR AU - Nguyen, Hoai-Minh TI - A refined estimate for the topological degree JO - Comptes Rendus. Mathématique PY - 2017 SP - 1046 EP - 1049 VL - 355 IS - 10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2017.10.007/ DO - 10.1016/j.crma.2017.10.007 LA - en ID - CRMATH_2017__355_10_1046_0 ER -
Nguyen, Hoai-Minh. A refined estimate for the topological degree. Comptes Rendus. Mathématique, Tome 355 (2017) no. 10, pp. 1046-1049. doi: 10.1016/j.crma.2017.10.007
[1] Ginzburg–Landau Vortices, Prog. Nonlinear Differ. Equ. Appl., vol. 13, Birkhäuser, Boston, 1994
[2] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005), pp. 529-551
[3] Complements to the paper “Lifting, Degree, and Distributional Jacobian Revisited” | HAL
[4] A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 787-791
[5] A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 75-80
[6] (Prog. Math.), Volume vol. 244, Birkhäuser (2006), pp. 137-154
[7] H. Brezis, Private communication, 2006.
[8] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720
[9] Optimal constant in a new estimate for the degree, J. Anal. Math., Volume 101 (2007), pp. 367-395
[10] Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011), pp. 483-509
Cité par Sources :





