In this note, we prove an -energy gap result for Yang–Mills connections on a principal G-bundle over a compact manifold without using the Lojasiewicz–Simon gradient inequality ([2] Theorem 1.1).
Dans cette note, nous démontrons un résultat concernant le gap d'énergie pour les connexions de Yang–Mills sur un fibré principal de groupe structural G sur une variété compacte, sans utiliser l'inégalité du gradient de Lojasiewicz–Simon.
Accepted:
Published online:
Huang, Teng 1
@article{CRMATH_2017__355_8_910_0,
author = {Huang, Teng},
title = {A proof of energy gap for {Yang{\textendash}Mills} connections},
journal = {Comptes Rendus. Math\'ematique},
pages = {910--913},
publisher = {Elsevier},
volume = {355},
number = {8},
year = {2017},
doi = {10.1016/j.crma.2017.07.012},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2017.07.012/}
}
TY - JOUR AU - Huang, Teng TI - A proof of energy gap for Yang–Mills connections JO - Comptes Rendus. Mathématique PY - 2017 SP - 910 EP - 913 VL - 355 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2017.07.012/ DO - 10.1016/j.crma.2017.07.012 LA - en ID - CRMATH_2017__355_8_910_0 ER -
Huang, Teng. A proof of energy gap for Yang–Mills connections. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 910-913. doi: 10.1016/j.crma.2017.07.012
[1] The Geometry of Four-Manifolds, Oxford University Press, 1990
[2] Energy gap for Yang–Mills connections, II: arbitrary closed Riemannian manifolds, Adv. Math., Volume 312 (2017), pp. 547-587
[3] An energy gap for Yang–Mills connections, Commun. Math. Phys., Volume 298 (2010), pp. 515-522
[4] Removable singularities in Yang–Mills fields, Commun. Math. Phys., Volume 83 (1982), pp. 11-29
[5] The Chern classes of Sobolev connections, Commun. Math. Phys., Volume 101 (1985), pp. 445-457
Cited by Sources:





