We show that, for a quadratic extension of p-adic fields, no cuspidal representation of the quasi-split unitary group admits a non-trivial linear form invariant by the symplectic subgroup. Our proof is purely local.
Nous montrons que, pour une extension quadratique de corps p-adiques, aucune représentation cuspidale du groupe unitaire semi-déployé n'admet de forme linéaire non nulle invariante par l'action du sous-groupe symplectique. Notre preuve est purement locale.
Accepted:
Published online:
@article{CRMATH_2017__355_1_15_0, author = {Mitra, Arnab and Offen, Omer}, title = {Vanishing of local symplectic periods for cuspidal representations of the unitary group}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--19}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.009}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2016.11.009/} }
TY - JOUR AU - Mitra, Arnab AU - Offen, Omer TI - Vanishing of local symplectic periods for cuspidal representations of the unitary group JO - Comptes Rendus. Mathématique PY - 2017 SP - 15 EP - 19 VL - 355 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.11.009/ DO - 10.1016/j.crma.2016.11.009 LA - en ID - CRMATH_2017__355_1_15_0 ER -
%0 Journal Article %A Mitra, Arnab %A Offen, Omer %T Vanishing of local symplectic periods for cuspidal representations of the unitary group %J Comptes Rendus. Mathématique %D 2017 %P 15-19 %V 355 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2016.11.009/ %R 10.1016/j.crma.2016.11.009 %G en %F CRMATH_2017__355_1_15_0
Mitra, Arnab; Offen, Omer. Vanishing of local symplectic periods for cuspidal representations of the unitary group. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 15-19. doi : 10.1016/j.crma.2016.11.009. https://www.numdam.org/articles/10.1016/j.crma.2016.11.009/
[1] Vanishing periods of cusp forms over modular symbols, Math. Ann., Volume 296 (1993) no. 4, pp. 709-723 MR 1233493 (94f:11044)
[2] On the support of Plancherel measure, J. Geom. Phys., Volume 5 (1988) no. 4, pp. 663-710 MR 1075727 (91k:22027)
[3] Symplectic models for Unitary groups | arXiv
[4] Symplectic–Whittaker models for , Pac. J. Math., Volume 146 (1990) no. 2, pp. 247-279 MR 1078382 (91k:22036)
[5] Tempered representations for classical p-adic groups, Manuscr. Math., Volume 145 (2014) no. 3–4, pp. 319-387 (MR 3268853)
[6] Subrepresentation theorem for p-adic symmetric spaces, Int. Math. Res. Not. (2008) no. 11, p. 40 Art. ID rnn028, MR 2428854 (2009i:22021)
[7] Terme constant de fonctions sur un espace symétrique réductif p-adique, J. Funct. Anal., Volume 254 (2008) no. 4, pp. 1088-1145 MR 2381204 (2009d:22013)
[8] Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc., Volume 15 (2002) no. 3, pp. 715-786 (electronic), MR 1896238 (2003g:22020)
[9] On tempered and square integrable representations of classical p-adic groups, Sci. China Math., Volume 56 (2013) no. 11, pp. 2273-2313 (MR 3123571)
[10] Distinguished tame supercuspidal representations of symmetric pairs , Manuscr. Math., Volume 148 (2015) no. 1–2, pp. 213-233 (with an appendix by Dihua Jiang and the author, MR 3377755)
Cited by Sources: