[Une classe de modèles multiphasiques compressibles]
This article presents a class of barotropic multiphase models, with a hyperbolic structure, and endowed with an entropic characterization. Consistent closure laws are proposed and discussed.
On présente dans cette note une classe de modèles multiphasiques barotropes, à structure hyperbolique, et dotés d'une caractérisation entropique. Des lois de fermeture consistantes sont proposées et discutées.
Accepté le :
Publié le :
Hérard, Jean-Marc 1, 2
@article{CRMATH_2016__354_9_954_0,
author = {H\'erard, Jean-Marc},
title = {A class of compressible multiphase flow models},
journal = {Comptes Rendus. Math\'ematique},
pages = {954--959},
year = {2016},
publisher = {Elsevier},
volume = {354},
number = {9},
doi = {10.1016/j.crma.2016.07.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2016.07.004/}
}
TY - JOUR AU - Hérard, Jean-Marc TI - A class of compressible multiphase flow models JO - Comptes Rendus. Mathématique PY - 2016 SP - 954 EP - 959 VL - 354 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.07.004/ DO - 10.1016/j.crma.2016.07.004 LA - en ID - CRMATH_2016__354_9_954_0 ER -
Hérard, Jean-Marc. A class of compressible multiphase flow models. Comptes Rendus. Mathématique, Tome 354 (2016) no. 9, pp. 954-959. doi: 10.1016/j.crma.2016.07.004
[1] A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, Volume 12 (1986) no. 6, pp. 861-889
[2] Comparison and validation of multiphase closure models, Comput. Math. Appl., Volume 56 (2008), pp. 1291-1302
[3] Comparison of various formulations of three-phase flow in porous media, J. Comput. Phys., Volume 132 (1997), pp. 362-373
[4] CEMRACS en calcul scientifique 1999, Matapli, Volume 62 (2000), pp. 27-58
[5] Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2002), pp. 927-932
[6] A class of two-fluid two-phase flow models, 2012 http://www.aiaa.org (AIAA paper 2012-3356, 42nd AIAA CFD conference, New Orleans, LA, USA. Available on)
[7] A quasi-linear parabolic system for three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 1029-1041
[8] The structure of pressure relaxation terms: the one-velocity case, 2014 (EDF report H-I83-2014-0276-EN)
[9] A variational principle for two fluid models, C. R. Acad. Sci. Paris, Ser. IIb, Volume 324 (1997), pp. 483-490
[10] Mathematical and numerical modelling of two-phase compressible flows with micro-inertia, J. Comput. Phys., Volume 175 (2002), pp. 326-360
[11] A hyperbolic three-phase relativistic flow model, ROMAI J., Volume 11 (2015), pp. 89-104
[12] A three-phase flow model, Math. Comput. Model., Volume 45 (2007), pp. 732-755
[13] Modelling multiphase multi-component flows: following the QUEST, 2016 (EDF report H-I8D-2016-0123-EN, in press)
[14] Two phase modeling of a DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9–12 (1997), pp. 3885-3897
[15] Closure conditions for non-equilibrium multi-component models, Contin. Mech. Thermodyn. (2015), pp. 1-33 (Available online)
[16] Conservative formulation for compressible multiphase flows, 2014 (pp. 1–21) | arXiv
Cité par Sources :





