[Une caractérisation faible des matrices de Wishart réelles par les formes quadratiques]
Let M be a random symmetric real p-matrix of Wishart distribution with k degrees of freedom and scale parameter Σ. The distribution of M can usually be characterized by the distribution of , for any Σ-orthogonal basis of . We propose to weaken this characterization, showing that, when , it is sufficient to know the distribution of .
Soit M une p-matrice aléatoire réelle symétrique de loi de Wishart à k degrés de liberté et de paramètre d'échelle Σ. On peut caractériser la loi de M par la loi de , pour toute base Σ-orthogonale de . Nous proposons une caractérisation plus faible de la loi de M, montrant que, si , il suffit de connaître la loi de .
Accepté le :
Publié le :
Fraisse, Gabriel 1 ; Viguier-Pla, Sylvie 1, 2
@article{CRMATH_2016__354_6_623_0,
author = {Fraisse, Gabriel and Viguier-Pla, Sylvie},
title = {A weak characterization of real {Wishart} matrices by quadratic forms},
journal = {Comptes Rendus. Math\'ematique},
pages = {623--627},
year = {2016},
publisher = {Elsevier},
volume = {354},
number = {6},
doi = {10.1016/j.crma.2016.03.011},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2016.03.011/}
}
TY - JOUR AU - Fraisse, Gabriel AU - Viguier-Pla, Sylvie TI - A weak characterization of real Wishart matrices by quadratic forms JO - Comptes Rendus. Mathématique PY - 2016 SP - 623 EP - 627 VL - 354 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.03.011/ DO - 10.1016/j.crma.2016.03.011 LA - en ID - CRMATH_2016__354_6_623_0 ER -
%0 Journal Article %A Fraisse, Gabriel %A Viguier-Pla, Sylvie %T A weak characterization of real Wishart matrices by quadratic forms %J Comptes Rendus. Mathématique %D 2016 %P 623-627 %V 354 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2016.03.011/ %R 10.1016/j.crma.2016.03.011 %G en %F CRMATH_2016__354_6_623_0
Fraisse, Gabriel; Viguier-Pla, Sylvie. A weak characterization of real Wishart matrices by quadratic forms. Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 623-627. doi: 10.1016/j.crma.2016.03.011
[1] Singular inverse Wishart distribution and its application to portfolio theory, J. Multivar. Anal., Volume 143 (2016), pp. 314-326
[2] Multivariate Statistics, Wiley, New York, 1983
[3] The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution, J. Theor. Probab., Volume 18 (2005) no. 1, pp. 1-42
[4] The Haar Integral, D. Van Nostrand Company, Inc., Princeton, NJ, Toronto, London, 1965
[5] Probabilités, Analyse des données et statistique, Technip, Paris, 2006
[6] On the degrees of freedom in MCMC-based Wishart models for time series data, Stat. Probab. Lett., Volume 98 (2015), pp. 59-64
Cité par Sources :





