[Sur le nombre de fibrations transverses à une courbe rationnelle dans une surface]
We investigate the existence, and lack of uniqueness, of a holomorphic fibration by discs transverse to a rational curve in a complex surface.
Nous étudions l'existence et le défaut d'unicité de fibrations holomorphes en disques transverses à une courbe rationnelle dans une surface complexe.
Accepté le :
Publié le :
Falla Luza, Maycol 1 ; Loray, Frank 2
@article{CRMATH_2016__354_5_470_0,
author = {Falla Luza, Maycol and Loray, Frank},
title = {On the number of fibrations transverse to a rational curve in complex surfaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {470--474},
year = {2016},
publisher = {Elsevier},
volume = {354},
number = {5},
doi = {10.1016/j.crma.2016.03.002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2016.03.002/}
}
TY - JOUR AU - Falla Luza, Maycol AU - Loray, Frank TI - On the number of fibrations transverse to a rational curve in complex surfaces JO - Comptes Rendus. Mathématique PY - 2016 SP - 470 EP - 474 VL - 354 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.03.002/ DO - 10.1016/j.crma.2016.03.002 LA - en ID - CRMATH_2016__354_5_470_0 ER -
%0 Journal Article %A Falla Luza, Maycol %A Loray, Frank %T On the number of fibrations transverse to a rational curve in complex surfaces %J Comptes Rendus. Mathématique %D 2016 %P 470-474 %V 354 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2016.03.002/ %R 10.1016/j.crma.2016.03.002 %G en %F CRMATH_2016__354_5_470_0
Falla Luza, Maycol; Loray, Frank. On the number of fibrations transverse to a rational curve in complex surfaces. Comptes Rendus. Mathématique, Tome 354 (2016) no. 5, pp. 470-474. doi: 10.1016/j.crma.2016.03.002
[1] M. Falla Luza, F. Loray, Projective connections and neighborhoods of rational lines, in preparation.
[2] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368
[3] Projective connections, double fibrations, and formal neighborhoods of lines, Math. Ann., Volume 292 (1992), pp. 383-409
[4] Webs and projective structures on a plane, Differ. Geom. Appl., Volume 7 (2014), pp. 133-140
[5] S.R. LeBrun Jr., Spaces of complex geodesics and related structures, PhD thesis.
[6] Neighborhoods of the Riemann sphere in complex surfaces, Funct. Anal. Appl., Volume 27 (1993), pp. 176-185
[7] Zero-type imbedding of a sphere into complex surfaces, Vestn. Mosk. Univ., Ser. I Mat. Mekh., Volume 85 (1982) no. 4, pp. 28-32
Cité par Sources :





