[Sur les bornes pour les coefficients d'un polynôme]
If is a polynomial of degree n, then it was proved by Rahman and Schmeisser [4] that for every ,
Si est un polynôme de degré n, Rahman et Schmeisser [4] ont montré que, pour tout , on a
Accepté le :
Publié le :
Gulzar, Suhail 1
@article{CRMATH_2016__354_4_357_0,
author = {Gulzar, Suhail},
title = {On estimates for the coefficients of a polynomial},
journal = {Comptes Rendus. Math\'ematique},
pages = {357--363},
year = {2016},
publisher = {Elsevier},
volume = {354},
number = {4},
doi = {10.1016/j.crma.2016.01.018},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2016.01.018/}
}
TY - JOUR AU - Gulzar, Suhail TI - On estimates for the coefficients of a polynomial JO - Comptes Rendus. Mathématique PY - 2016 SP - 357 EP - 363 VL - 354 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.01.018/ DO - 10.1016/j.crma.2016.01.018 LA - en ID - CRMATH_2016__354_4_357_0 ER -
Gulzar, Suhail. On estimates for the coefficients of a polynomial. Comptes Rendus. Mathématique, Tome 354 (2016) no. 4, pp. 357-363. doi: 10.1016/j.crma.2016.01.018
[1] On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22 (in Russian); English translation: Math. USSR, Izv., 18, 1982, pp. 1-17
[2] An inequality for a polynomial and its derivative, J. Math. Anal. Appl., Volume 193 (1995), pp. 490-496
[3] Analytic Theory of Polynomials, Oxford University Press, New York, 2002
[4] inequalities for polynomial, J. Approx. Theory, Volume 53 (1988), pp. 26-32
[5] A simple proof of certain inequalities concerning polynomials, Proc. K. Ned. Akad. Wet., Volume 47 (1945), pp. 276-281
Cité par Sources :





