Differential geometry
Analytic torsion, dynamical zeta functions and orbital integrals
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 433-436.

The purpose of this Note is to prove an identity between the analytic torsion and the value at zero of a dynamical zeta function associated with an acyclic unitarily flat vector bundle on a closed locally symmetric reductive manifold, which solves a conjecture of Fried.

L'objet de cette Note est de démontrer une égalité entre la torsion analytique et la valeur en zéro d'une fonction zêta dynamique associée à un fibré vectoriel unitairement plat sur une variété compacte localement symétrique réductive. Nous démontrons aussi une conjecture de Fried.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.008
Shen, Shu 1

1 Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin, Germany
@article{CRMATH_2016__354_4_433_0,
     author = {Shen, Shu},
     title = {Analytic torsion, dynamical zeta functions and orbital integrals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {433--436},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2016.01.008/}
}
TY  - JOUR
AU  - Shen, Shu
TI  - Analytic torsion, dynamical zeta functions and orbital integrals
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 433
EP  - 436
VL  - 354
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2016.01.008/
DO  - 10.1016/j.crma.2016.01.008
LA  - en
ID  - CRMATH_2016__354_4_433_0
ER  - 
%0 Journal Article
%A Shen, Shu
%T Analytic torsion, dynamical zeta functions and orbital integrals
%J Comptes Rendus. Mathématique
%D 2016
%P 433-436
%V 354
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2016.01.008/
%R 10.1016/j.crma.2016.01.008
%G en
%F CRMATH_2016__354_4_433_0
Shen, Shu. Analytic torsion, dynamical zeta functions and orbital integrals. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 433-436. doi : 10.1016/j.crma.2016.01.008. https://www.numdam.org/articles/10.1016/j.crma.2016.01.008/

[1] Bismut, J.-M. The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476

[2] Bismut, J.-M. Hypoelliptic Laplacian and Orbital Integrals, Ann. Math. Stud., vol. 177, Princeton University Press, Princeton, NJ, USA, 2011

[3] Bismut, J.-M.; Goette, S. Equivariant de Rham torsions, Ann. Math., Volume 159 (2004) no. 1, pp. 53-216

[4] Bismut, J.-M.; Zhang, W. An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235

[5] Cheeger, J. Analytic torsion and the heat equation, Ann. Math., Volume 109 (1979) no. 2, pp. 259-322

[6] Fried, D. Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math., Volume 84 (1986) no. 3, pp. 523-540

[7] Fried, D. Lefschetz formulas for flows, the Lefschetz centennial conference, Mexico City, 1984 (Contemp. Math.), Volume vol. 58, Amer. Math. Soc., Providence, RI, USA (1987), pp. 19-69

[8] Hecht, H.; Schmid, W. Characters, asymptotics and n-homology of Harish–Chandra modules, Acta Math., Volume 151 (1983) no. 1–2, pp. 49-151

[9] Milnor, J.W. Infinite cyclic coverings, Michigan State Univ., E. Lansing, Mich., 1967, Prindle, Weber & Schmidt, Boston, MA, USA (1968), pp. 115-133

[10] Moscovici, H.; Stanton, R.J. R-torsion and zeta functions for locally symmetric manifolds, Invent. Math., Volume 105 (1991) no. 1, pp. 185-216

[11] Mostow, G.D. Intersections of discrete subgroups with Cartan subgroups, J. Indian Math. Soc., Volume 34 (1970) no. 3–4, pp. 203-214

[12] Müller, W. Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math., Volume 28 (1978) no. 3, pp. 233-305

[13] Müller, W. Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc., Volume 6 (1993) no. 3, pp. 721-753

[14] Ray, D.B.; Singer, I.M. R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210

[15] Salamanca-Riba, S.A. On the unitary dual of real reductive Lie groups and the Ag(λ) modules: the strongly regular case, Duke Math. J., Volume 96 (1999) no. 3, pp. 521-546

[16] S. Shen, Analytic torsion, dynamical zeta functions and orbital integrals, in press.

[17] Vogan, D.A. Jr. Unitarizability of certain series of representations, Ann. Math., Volume 120 (1984) no. 1, pp. 141-187

[18] Vogan, D.A. Jr.; Zuckerman, G.J. Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90

Cited by Sources: