We consider a class of multiscale parabolic problems with diffusion coefficients oscillating in space at a possibly small scale ε. Numerical homogenization methods are popular for such problems, because they capture efficiently the asymptotic behavior as , without using a dramatically fine spatial discretization at the scale of the fast oscillations. However, it is known that such homogenization schemes are in general not accurate for both the highly oscillatory regime and the non-oscillatory regime . In this paper, we introduce an Asymptotic Preserving method based on an exact micro–macro decomposition of the solution, which remains consistent for both regimes.
On considère une classe de problèmes paraboliques multi-échelles dont les coefficients de diffusion oscillent rapidement en espace à une échelle ε possiblement petite. Les méthodes numériques d'homogénéisation sont populaires pour ces problèmes, car elles capturent efficacement le comportement asymptotique lorsque , sans utiliser une discrétisation spatiale aussi fine que l'échelle des oscillations rapides, comme le nécessiteraient les méthodes non raides standard. Cependant, les schémas d'homogénéisation existants ne sont en général pas précis dans les deux régimes oscillant et non oscillant . Dans ce travail, nous introduisons une méthode Asymptotic Preserving basée sur une décomposition micro–macro exacte, qui reste consistante pour les deux régimes.
Accepted:
Published online:
@article{CRMATH_2016__354_3_271_0, author = {Crouseilles, Nicolas and Lemou, Mohammed and Vilmart, Gilles}, title = {Asymptotic {Preserving} numerical schemes for multiscale parabolic problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {271--276}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.11.010}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.11.010/} }
TY - JOUR AU - Crouseilles, Nicolas AU - Lemou, Mohammed AU - Vilmart, Gilles TI - Asymptotic Preserving numerical schemes for multiscale parabolic problems JO - Comptes Rendus. Mathématique PY - 2016 SP - 271 EP - 276 VL - 354 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.11.010/ DO - 10.1016/j.crma.2015.11.010 LA - en ID - CRMATH_2016__354_3_271_0 ER -
%0 Journal Article %A Crouseilles, Nicolas %A Lemou, Mohammed %A Vilmart, Gilles %T Asymptotic Preserving numerical schemes for multiscale parabolic problems %J Comptes Rendus. Mathématique %D 2016 %P 271-276 %V 354 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2015.11.010/ %R 10.1016/j.crma.2015.11.010 %G en %F CRMATH_2016__354_3_271_0
Crouseilles, Nicolas; Lemou, Mohammed; Vilmart, Gilles. Asymptotic Preserving numerical schemes for multiscale parabolic problems. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 271-276. doi : 10.1016/j.crma.2015.11.010. https://www.numdam.org/articles/10.1016/j.crma.2015.11.010/
[1] The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87
[2] Coupling heterogeneous multiscale FEM with Runge–Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 6
[3] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[4] Asymptotic Analysis for Periodic Structures, North-Holland Publishing Co., Amsterdam, 1978
[5] Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., Volume 71 (1992) no. 3, pp. 197-231
[6] N. Crouseilles, M. Lemou, G. Vilmart, Asymptotic preserving numerical schemes for multiscale parabolic problems, in preparation.
[7] The heterogeneous multiscale methods, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132
[8] Multiscale Finite Element Methods. Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4, Springer, New York, 2009
[9] A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., Volume 134 (1997) no. 1, pp. 169-189
[10] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, Heidelberg, 1994
[11] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 441-454 (electronic)
[12] Relaxed micro–macro schemes for kinetic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 7–8, pp. 455-460
[13] A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 31 (2008) no. 1, pp. 334-368
Cited by Sources: