[Une note sur le modèle de Kirillov des représentations de ]
Let and be an additive character. Let U be the subgroup of upper triangular unipotent matrices in G. Denote by θ the character given by
Soit et un caractère additif non trivial. Soit U le sous-groupe des matrices triangulaires supérieures unipotentes de G. Notons le caractère donné par
Accepté le :
Publié le :
Kemarsky, Alexander 1
@article{CRMATH_2015__353_7_579_0,
author = {Kemarsky, Alexander},
title = {A note on the {Kirillov} model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$},
journal = {Comptes Rendus. Math\'ematique},
pages = {579--582},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {7},
doi = {10.1016/j.crma.2015.04.002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.002/}
}
TY - JOUR
AU - Kemarsky, Alexander
TI - A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$
JO - Comptes Rendus. Mathématique
PY - 2015
SP - 579
EP - 582
VL - 353
IS - 7
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2015.04.002/
DO - 10.1016/j.crma.2015.04.002
LA - en
ID - CRMATH_2015__353_7_579_0
ER -
%0 Journal Article
%A Kemarsky, Alexander
%T A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$
%J Comptes Rendus. Mathématique
%D 2015
%P 579-582
%V 353
%N 7
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2015.04.002/
%R 10.1016/j.crma.2015.04.002
%G en
%F CRMATH_2015__353_7_579_0
Kemarsky, Alexander. A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 579-582. doi: 10.1016/j.crma.2015.04.002
[1] Representations of the group where K is a local field, Budapest, 1971, Halsted, New York (1975), pp. 95-118
[2] Distinction by the quasi-split unitary group, Isr. J. Math., Volume 178 (2010) no. 1, pp. 269-324
[3] On Euler products and the classification of automorphic representations I, Amer. J. Math., Volume 103 (1981) no. 3, pp. 499-558
[4] The multiplicity one theorem for GL(n), Ann. Math., Volume 100 (1974) no. 2, pp. 171-193
Cité par Sources :





