[Sous-modules de Rudin de ]
Let be a sequence of scalars in the open unit disc of , and let be a sequence of natural numbers satisfying . Then the joint invariant subspace
Soit une suite de scalaires du disque unité ouvert de , et soit une suite de nombres naturels vérifiant . Alors le sous-espace invariant
Accepté le :
Publié le :
Das, B. Krishna 1 ; Sarkar, Jaydeb 1
@article{CRMATH_2015__353_1_51_0,
author = {Das, B. Krishna and Sarkar, Jaydeb},
title = {Rudin's submodules of $ {H}^{2}({\mathbb{D}}^{2})$},
journal = {Comptes Rendus. Math\'ematique},
pages = {51--55},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {1},
doi = {10.1016/j.crma.2014.10.005},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2014.10.005/}
}
TY - JOUR
AU - Das, B. Krishna
AU - Sarkar, Jaydeb
TI - Rudin's submodules of $ {H}^{2}({\mathbb{D}}^{2})$
JO - Comptes Rendus. Mathématique
PY - 2015
SP - 51
EP - 55
VL - 353
IS - 1
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2014.10.005/
DO - 10.1016/j.crma.2014.10.005
LA - en
ID - CRMATH_2015__353_1_51_0
ER -
%0 Journal Article
%A Das, B. Krishna
%A Sarkar, Jaydeb
%T Rudin's submodules of $ {H}^{2}({\mathbb{D}}^{2})$
%J Comptes Rendus. Mathématique
%D 2015
%P 51-55
%V 353
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2014.10.005/
%R 10.1016/j.crma.2014.10.005
%G en
%F CRMATH_2015__353_1_51_0
Das, B. Krishna; Sarkar, Jaydeb. Rudin's submodules of $ {H}^{2}({\mathbb{D}}^{2})$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 1, pp. 51-55. doi: 10.1016/j.crma.2014.10.005
[1] Beurling's theorem for the Bergman space, Acta Math., Volume 177 (1996), pp. 275-310
[2] Wandering subspaces of the Bergman space and the Dirichlet space over polydisc, Integral Equ. Oper. Theory, Volume 79 (2014) no. 4, pp. 567-577
[3] Hilbert Modules over Function Algebras, Research Notes in Mathematics Series, vol. 47, Longman, Harlow, UK, 1989
[4] Operator theory in the Hardy space over the bidisk (I), Integral Equ. Oper. Theory, Volume 38 (2000), pp. 207-221
[5] Ranks of invariant subspaces of the Hardy space over the bidisk, J. Reine Angew. Math., Volume 659 (2011), pp. 101-139
[6] Szegö's theorem on a bidisk, Trans. Amer. Math. Soc., Volume 328 (1991), pp. 421-432
[7] Function Theory in Polydiscs, Benjamin, New York, 1969
[8] Doubly commuting submodules of the Hardy module over polydiscs, Stud. Math., Volume 217 (2013), pp. 179-192
[9] A new proof that Rudin's module is not finitely generated, Recent Advances in Operator Theory and Applications, Operator Theory: Advances and Applications, vol. 187, 2009, pp. 195-197
[10] Infinite sequences of inner functions and submodules in , J. Oper. Theory, Volume 61 (2009), pp. 75-86
[11] A perturbation theory for core operators of Hilbert–Schmidt submodules, Integral Equ. Oper. Theory, Volume 70 (2011), pp. 379-394
[12] Inner sequence based invariant subspaces in , Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2519-2526
Cité par Sources :





