We prove that the pointwise product of two holomorphic functions of the upper half-plane, one in the Hardy space , the other one in its dual, belongs to a Hardy-type space. Conversely, every holomorphic function in this space can be written as such a product. This generalizes a previous characterization in the context of the unit disc.
Nous démontrons que le produit ponctuel de deux fonctions holomorphes du demi-plan supérieur, l'une dans l'espace de Hardy , l'autre dans son dual, appartiennent à un espace de type Hardy. À l'inverse, chaque fonction holomorphe de cet espace peut s'écrire sous la forme d'un tel produit. Ceci généralise un résultat connu dans le cas du disque unité.
Accepted:
Published online:
@article{CRMATH_2014__352_10_817_0, author = {Bonami, Aline and Ky, Luong Dang}, title = {Factorization of some {Hardy-type} spaces of holomorphic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--821}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.004}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/} }
TY - JOUR AU - Bonami, Aline AU - Ky, Luong Dang TI - Factorization of some Hardy-type spaces of holomorphic functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 817 EP - 821 VL - 352 IS - 10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/ DO - 10.1016/j.crma.2014.09.004 LA - en ID - CRMATH_2014__352_10_817_0 ER -
%0 Journal Article %A Bonami, Aline %A Ky, Luong Dang %T Factorization of some Hardy-type spaces of holomorphic functions %J Comptes Rendus. Mathématique %D 2014 %P 817-821 %V 352 %N 10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/ %R 10.1016/j.crma.2014.09.004 %G en %F CRMATH_2014__352_10_817_0
Bonami, Aline; Ky, Luong Dang. Factorization of some Hardy-type spaces of holomorphic functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 817-821. doi : 10.1016/j.crma.2014.09.004. https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/
[1] Hankel operators and weak factorization for Hardy–Orlicz spaces, Colloq. Math., Volume 118 (2010) no. 1, pp. 107-132
[2] Paraproducts and products of functions in and through wavelets, J. Math. Pures Appl. (9), Volume 97 (2012) no. 3, pp. 230-241
[3] A. Bonami, S. Grellier, L.D. Ky, Hardy spaces of Musielak–Orlicz type on the half-plane, preprint.
[4] On the product of functions in BMO and , Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 5, pp. 1405-1439
[5] Riesz transform characterizations of Musielak–Orlicz–Hardy spaces Trans. Amer. Math. Soc. (to appear) or | arXiv
[6] Another characterization of BMO, Proc. Amer. Math. Soc., Volume 79 (1980) no. 2, pp. 249-254
[7] Bounded Analytic Functions, Academic Press, New York, 1981
[8] Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc., Volume 365 (2013) no. 6, pp. 2931-2958
[9] New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators, Integral Equ. Oper. Theory, Volume 78 (2014) no. 1, pp. 115-150
[10] New real-variable characterizations of Musielak–Orlicz Hardy spaces, J. Math. Anal. Appl., Volume 395 (2012) no. 1, pp. 413-428
Cited by Sources: