Harmonic analysis
Factorization of some Hardy-type spaces of holomorphic functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 817-821.

We prove that the pointwise product of two holomorphic functions of the upper half-plane, one in the Hardy space H1, the other one in its dual, belongs to a Hardy-type space. Conversely, every holomorphic function in this space can be written as such a product. This generalizes a previous characterization in the context of the unit disc.

Nous démontrons que le produit ponctuel de deux fonctions holomorphes du demi-plan supérieur, l'une dans l'espace de Hardy H1, l'autre dans son dual, appartiennent à un espace de type Hardy. À l'inverse, chaque fonction holomorphe de cet espace peut s'écrire sous la forme d'un tel produit. Ceci généralise un résultat connu dans le cas du disque unité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.004
Bonami, Aline 1; Ky, Luong Dang 2

1 MAPMO–UMR 6628, Département de mathématiques, Université d'Orléans, 45067 Orléans cedex 2, France
2 Department of Mathematics, University of Quy Nhon, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
@article{CRMATH_2014__352_10_817_0,
     author = {Bonami, Aline and Ky, Luong Dang},
     title = {Factorization of some {Hardy-type} spaces of holomorphic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {817--821},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/}
}
TY  - JOUR
AU  - Bonami, Aline
AU  - Ky, Luong Dang
TI  - Factorization of some Hardy-type spaces of holomorphic functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 817
EP  - 821
VL  - 352
IS  - 10
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/
DO  - 10.1016/j.crma.2014.09.004
LA  - en
ID  - CRMATH_2014__352_10_817_0
ER  - 
%0 Journal Article
%A Bonami, Aline
%A Ky, Luong Dang
%T Factorization of some Hardy-type spaces of holomorphic functions
%J Comptes Rendus. Mathématique
%D 2014
%P 817-821
%V 352
%N 10
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/
%R 10.1016/j.crma.2014.09.004
%G en
%F CRMATH_2014__352_10_817_0
Bonami, Aline; Ky, Luong Dang. Factorization of some Hardy-type spaces of holomorphic functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 817-821. doi : 10.1016/j.crma.2014.09.004. https://www.numdam.org/articles/10.1016/j.crma.2014.09.004/

[1] Bonami, A.; Grellier, S. Hankel operators and weak factorization for Hardy–Orlicz spaces, Colloq. Math., Volume 118 (2010) no. 1, pp. 107-132

[2] Bonami, A.; Grellier, S.; Ky, L.D. Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets, J. Math. Pures Appl. (9), Volume 97 (2012) no. 3, pp. 230-241

[3] A. Bonami, S. Grellier, L.D. Ky, Hardy spaces of Musielak–Orlicz type on the half-plane, preprint.

[4] Bonami, A.; Iwaniec, T.; Jones, P.; Zinsmeister, M. On the product of functions in BMO and H1, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 5, pp. 1405-1439

[5] Cao, J.; Chang, D.-C.; Yang, D.; Yang, S. Riesz transform characterizations of Musielak–Orlicz–Hardy spaces Trans. Amer. Math. Soc. (to appear) or | arXiv

[6] Coifman, R.R.; Rochberg, R. Another characterization of BMO, Proc. Amer. Math. Soc., Volume 79 (1980) no. 2, pp. 249-254

[7] Garnett, J.B. Bounded Analytic Functions, Academic Press, New York, 1981

[8] Ky, L.D. Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc., Volume 365 (2013) no. 6, pp. 2931-2958

[9] Ky, L.D. New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators, Integral Equ. Oper. Theory, Volume 78 (2014) no. 1, pp. 115-150

[10] Liang, Y.; Huang, J.; Yang, D. New real-variable characterizations of Musielak–Orlicz Hardy spaces, J. Math. Anal. Appl., Volume 395 (2012) no. 1, pp. 413-428

Cited by Sources: