[Sur les connexions métriques anti-hermitiennes]
It is a remarkable fact that anti-Kähler and its twin metrics share the same Levi–Civita connection. Such torsion-free metric connection also emphasizes the importance of anti-Hermitian metric connections with torsion in the study of anti-Hermitian geometry. With the objective of defining new types of anti-Hermitian metric connections, in the present paper we consider classes of anti-Hermitian manifolds associated with these connections.
C'est un fait remarquable que les métriques anti-kählériennes et leurs métriques jumelles possèdent la même connexion de Levi–Civita. De telles connexions métriques sans torsion mettent aussi en relief l'importance des connexions métriques anti-hermitiennes avec torsion dans l'étude de la géométrie anti-hermitienne. Dans le but de définir de nouveaux types de connexions métriques anti-hermitiennes, nous considérons dans la présente note des classes de variétés anti-hermitiennes associées à ces connexions.
Accepté le :
Publié le :
Salimov, Arif 1
@article{CRMATH_2014__352_9_731_0,
author = {Salimov, Arif},
title = {On {anti-Hermitian} metric connections},
journal = {Comptes Rendus. Math\'ematique},
pages = {731--735},
year = {2014},
publisher = {Elsevier},
volume = {352},
number = {9},
doi = {10.1016/j.crma.2014.07.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2014.07.004/}
}
TY - JOUR AU - Salimov, Arif TI - On anti-Hermitian metric connections JO - Comptes Rendus. Mathématique PY - 2014 SP - 731 EP - 735 VL - 352 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.07.004/ DO - 10.1016/j.crma.2014.07.004 LA - en ID - CRMATH_2014__352_9_731_0 ER -
Salimov, Arif. On anti-Hermitian metric connections. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 731-735. doi: 10.1016/j.crma.2014.07.004
[1] A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989) no. 4, pp. 681-699
[2] On Kähler–Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., Volume 119 (2009) no. 1, pp. 71-80
[3] On Lie groups as quasi-Kähler manifolds with Killing Norden metric, Adv. Geom., Volume 8 (2008) no. 3, pp. 343-352
[4] On operators associated with tensor fields, J. Geom., Volume 99 (2010) no. 1–2, pp. 107-145
[5] Curvature properties of anti-Kähler–Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 5–6, pp. 225-227
[6] Analytic tensor and its generalization, Tohoku Math. J., Volume 12 (1960) no. 2, pp. 208-221
Cité par Sources :
☆ The author is grateful to the referee for careful reading and useful comments. This paper is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 112T111).





