[Récurrence d'une marche aléatoire renforcée par sommets sur avec poids inférieur à racine carrée]
We prove that vertex-reinforced random walk on with weight of order , for , is recurrent. This confirms a conjecture of Volkov for . The conjecture for remains open.
On démontre que toute marche aléatoire renforcée par sommets sur avec poids de l'ordre de , pour , est récurrente. Ce résultat confirme une conjecture de Volkov pour . La conjecture reste ouverte pour .
Accepté le :
Publié le :
Chen, Jun 1 ; Kozma, Gady 2
@article{CRMATH_2014__352_6_521_0,
author = {Chen, Jun and Kozma, Gady},
title = {Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent},
journal = {Comptes Rendus. Math\'ematique},
pages = {521--524},
year = {2014},
publisher = {Elsevier},
volume = {352},
number = {6},
doi = {10.1016/j.crma.2014.03.019},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2014.03.019/}
}
TY - JOUR
AU - Chen, Jun
AU - Kozma, Gady
TI - Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent
JO - Comptes Rendus. Mathématique
PY - 2014
SP - 521
EP - 524
VL - 352
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2014.03.019/
DO - 10.1016/j.crma.2014.03.019
LA - en
ID - CRMATH_2014__352_6_521_0
ER -
%0 Journal Article
%A Chen, Jun
%A Kozma, Gady
%T Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent
%J Comptes Rendus. Mathématique
%D 2014
%P 521-524
%V 352
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2014.03.019/
%R 10.1016/j.crma.2014.03.019
%G en
%F CRMATH_2014__352_6_521_0
Chen, Jun; Kozma, Gady. Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent. Comptes Rendus. Mathématique, Tome 352 (2014) no. 6, pp. 521-524. doi: 10.1016/j.crma.2014.03.019
[1] Reinforced random walk, Probab. Theory Relat. Fields, Volume 84 (1990) no. 2, pp. 203-229 springer.com (Available at:)
[2] Gideon Amir, Itai Benjamini, Ori Gurel-Gurevich, Gady Kozma, Random walk in changing environment, unpublished manuscript, circa 2006.
[3] Vertex-reinforced random walk, Probab. Theory Relat. Fields, Volume 92 (1992) no. 1, pp. 117-136 springer.com upenn.edu/~pemantle (Available at:)
[4] Vertex-reinforced random walk on has finite range, Ann. Probab., Volume 27 (1999) no. 3, pp. 1368-1388 projecteuclid.org (Available at:)
[5] A 0–1 law for vertex-reinforced random walks on with weight of order , , Electron. Commun. Probab., Volume 17 (2012) no. 22 ejpecp.org (Available at:)
[6] Recurrence for vertex-reinforced random walks on with weak reinforcements, 2014 (Available at:) | arXiv
[7] Vertex-reinforced random walk on eventually gets stuck on five points, Ann. Probab., Volume 32 (2004) no. 3B, pp. 2650-2701 projecteuclid.org (Available at:)
[8] Phase transition in vertex-reinforced random walks on with non-linear reinforcement, J. Theor. Probab., Volume 19 (2006) no. 3, pp. 691-700 springer.com lth.se/.../s.volkov (Available at:)
Cité par Sources :





