Complex analysis
Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 13-16.

Let ALϕ2(D) denote the closed subspace of L2(D,e2ϕdλ) consisting of holomorphic functions in the unit disc D. For certain class of subharmonic functions ϕ:DD, we prove an upper pointwise estimate for the Bergman kernel for ALϕ2(D).

Soit ALϕ2(D) le sous-espace fermé de L2(D,e2ϕdλ) formé des fonctions holomorphes sur le disque unité D. Pour une classe de fonctions sous-harmoniques ϕ:DD, on établit une estimation ponctuelle du noyau de Bergman de ALϕ2(D).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.001
Asserda, Saïd 1; Hichame, Amal 2

1 Ibn Tofail University, Faculty of Sciences, Department of Mathematics, PO 242 Kenitra, Morocco
2 Regional Centre of Trades of Education and Training, Kenitra, Morocco
@article{CRMATH_2014__352_1_13_0,
     author = {Asserda, Sa{\"\i}d and Hichame, Amal},
     title = {Pointwise estimate for the {Bergman} kernel of the weighted {Bergman} spaces with exponential type weights},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--16},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.001},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2013.11.001/}
}
TY  - JOUR
AU  - Asserda, Saïd
AU  - Hichame, Amal
TI  - Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 13
EP  - 16
VL  - 352
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2013.11.001/
DO  - 10.1016/j.crma.2013.11.001
LA  - en
ID  - CRMATH_2014__352_1_13_0
ER  - 
%0 Journal Article
%A Asserda, Saïd
%A Hichame, Amal
%T Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights
%J Comptes Rendus. Mathématique
%D 2014
%P 13-16
%V 352
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.11.001/
%R 10.1016/j.crma.2013.11.001
%G en
%F CRMATH_2014__352_1_13_0
Asserda, Saïd; Hichame, Amal. Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 13-16. doi : 10.1016/j.crma.2013.11.001. https://www.numdam.org/articles/10.1016/j.crma.2013.11.001/

[1] Arroussi, H.; Pau, J. Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, Sep. 2013 | arXiv

[2] Azagra, D.; Ferrera, J.; Lopez-Mesas, F.; Rangel, Y. Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl., Volume 326 (2007), pp. 1370-1378

[3] Berndtsson, B. Weighted estimates for the ¯-equation, Columbus, OH, 1999 (Ohio State Univ. Math. Res. Inst. Publ.), Volume vol. 9, De Gruyter, Berlin (2001), pp. 43-57

[4] Christ, M. On the ¯-equation in weighted L2 norm in C, J. Geom. Anal., Volume 1 (1991) no. 3, pp. 193-230

[5] Delin, H. Pointwise estimates for the weighted Bergman projection kernel in Cn using a weighted L2 estimate for the ¯ equation, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 4, pp. 967-997

[6] Greene, R.E.; Wu, H. C approximations of convex, subharmonic, and plurisubhrmonic functions, Ann. Sci. Ec. Norm. Super. (4), Volume 12 (1979) no. 1, pp. 47-84

[7] Lin, P.; Rochberg, R. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pac. J. Math., Volume 173 (1996) no. 1, pp. 127-146

[8] Lindholm, N. Sampling in weighted Lp spaces of entire function in Cn and estimates of the Bergman kernel, J. Funct. Anal., Volume 182 (2001), pp. 390-426

[9] Marzo, J.; Ortega-Cerdà, J. Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal., Volume 19 (2009), pp. 890-910

[10] Oleinik, V.L.; Pavlov, B.S. Imbedding theorems for weighted classes of harmonic and analytic functions, J. Sov. Math., Volume 2 (1974), pp. 135-142 translation in: Zap. Nauchn. Sem. LOMI Steklov 22 (1971)

[11] Oleinik, V.L.; Perelʼman, G.S. Carlesonʼs Imbedding theorems for a weighted Bergman spaces, Math. Notes, Volume 7 (1990), pp. 577-581

[12] Schuster, A.P.; Varolin, D. New estimates for the minimal L2 solution of ¯ and application to geometric function theory in weighted Bergman spaces, J. Reine Angew. Math. (2013) | DOI

Cited by Sources: