[Une remarque sur l'approximation des fonctions pluri-sous-harmoniques]
We show by an example that the Demailly approximation sequence of a plurisubharmonic function, constructed via Bergman kernels, is not a decreasing sequence in general.
Nous montrons par un exemple que le résultat de Demailly relatif à l'approximation d'une fonction pluri-sous-harmonique via les noyaux de Bergman ne produit pas en général une suite décroissante.
Accepté le :
Publié le :
Kim, Dano 1
@article{CRMATH_2014__352_5_387_0,
author = {Kim, Dano},
title = {A remark on the approximation of plurisubharmonic functions},
journal = {Comptes Rendus. Math\'ematique},
pages = {387--389},
year = {2014},
publisher = {Elsevier},
volume = {352},
number = {5},
doi = {10.1016/j.crma.2013.10.024},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.10.024/}
}
TY - JOUR AU - Kim, Dano TI - A remark on the approximation of plurisubharmonic functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 387 EP - 389 VL - 352 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.10.024/ DO - 10.1016/j.crma.2013.10.024 LA - en ID - CRMATH_2014__352_5_387_0 ER -
Kim, Dano. A remark on the approximation of plurisubharmonic functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 387-389. doi: 10.1016/j.crma.2013.10.024
[1] Some applications of the Ohsawa–Takegoshi extension theorem, Expo. Math., Volume 27 (2009) no. 2, pp. 125-135
[2] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992), pp. 361-409
[3] Analytic Methods in Algebraic Geometry, International Press, Boston, 2012
[4] Pseudo-effective line bundles on compact Khler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741
[5] (Ergeb. Math. Ihrer Grenzgeb.), Volume vol. 3, Springer-Verlag, Berlin (2004), pp. 48-49
Cité par Sources :





