We give a proof of the fact that an anti-Kähler–Codazzi manifold reduces to an isotropic anti-Kähler manifold if and only if the Ricci tensor field coincides with the Ricci* tensor field.
Nous donnons une preuve du fait quʼune variété de type anti-Kähler–Codazzi se réduit à une variété isotrope du même type si et seulement si le champ de tenseurs de Ricci coïncide avec le champ de tenseurs de Ricci*.
Accepted:
Published online:
@article{CRMATH_2013__351_21-22_837_0, author = {Salimov, Arif and Akbulut, Kursat and Turanli, Sibel}, title = {On an isotropic property of {anti-K\"ahler{\textendash}Codazzi} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {837--839}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.09.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.09.020/} }
TY - JOUR AU - Salimov, Arif AU - Akbulut, Kursat AU - Turanli, Sibel TI - On an isotropic property of anti-Kähler–Codazzi manifolds JO - Comptes Rendus. Mathématique PY - 2013 SP - 837 EP - 839 VL - 351 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.09.020/ DO - 10.1016/j.crma.2013.09.020 LA - en ID - CRMATH_2013__351_21-22_837_0 ER -
%0 Journal Article %A Salimov, Arif %A Akbulut, Kursat %A Turanli, Sibel %T On an isotropic property of anti-Kähler–Codazzi manifolds %J Comptes Rendus. Mathématique %D 2013 %P 837-839 %V 351 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.09.020/ %R 10.1016/j.crma.2013.09.020 %G en %F CRMATH_2013__351_21-22_837_0
Salimov, Arif; Akbulut, Kursat; Turanli, Sibel. On an isotropic property of anti-Kähler–Codazzi manifolds. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 837-839. doi : 10.1016/j.crma.2013.09.020. https://www.numdam.org/articles/10.1016/j.crma.2013.09.020/
[1] Isotropic Kähler structures on Engel 4-manifolds, J. Geom. Phys., Volume 33 (2000), pp. 288-294
[2] Tensor Operators and Their Applications, Nova Science Publishers, New York, 2012
[3] Curvature properties of anti-Kähler–Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 5–6, pp. 225-227
[4] Analytic tensor and its generalization, Tohoku Math. J., Volume 12 (1960) no. 2, pp. 208-221
Cited by Sources: