[Sur une extension dʼune fonctionnelle bilinéaire sur aux espaces du Bochner avec une application sur la moyennisation en vitesse]
We examine necessary and sufficient conditions under which a continuous bilinear functional B on , , E being a separable Banach space, can be continuously extended to a linear functional on . The extension enables a generalisation of the H-distribution concept, allowing us to obtain a (heterogeneous) velocity averaging result in the framework for any .
Nous examinons les conditions nécessaires et suffisantes pour quʼune fonctionelle bilinéaire continue sur , , E étant un espace de Banach séparable, peut être étendue à une fonctionnelle linaire sur . Lʼextension permet une généralisation de lʼH-distribution, qui fournit lʼamélioration dʼun résultat de moyennisation en vitesse (hétèrogène) sur le cadre pour tout .
Accepté le :
Publié le :
Lazar, Martin 1, 2 ; Mitrović, Darko 3
@article{CRMATH_2013__351_7-8_261_0,
author = {Lazar, Martin and Mitrovi\'c, Darko},
title = {On an extension of a bilinear functional on $ {\mathrm{L}}^{p}({\mathbf{R}}^{d})\otimes E$ to a {Bochner} space with an application to velocity averaging},
journal = {Comptes Rendus. Math\'ematique},
pages = {261--264},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {7-8},
doi = {10.1016/j.crma.2013.04.013},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.04.013/}
}
TY - JOUR
AU - Lazar, Martin
AU - Mitrović, Darko
TI - On an extension of a bilinear functional on $ {\mathrm{L}}^{p}({\mathbf{R}}^{d})\otimes E$ to a Bochner space with an application to velocity averaging
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 261
EP - 264
VL - 351
IS - 7-8
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2013.04.013/
DO - 10.1016/j.crma.2013.04.013
LA - en
ID - CRMATH_2013__351_7-8_261_0
ER -
%0 Journal Article
%A Lazar, Martin
%A Mitrović, Darko
%T On an extension of a bilinear functional on $ {\mathrm{L}}^{p}({\mathbf{R}}^{d})\otimes E$ to a Bochner space with an application to velocity averaging
%J Comptes Rendus. Mathématique
%D 2013
%P 261-264
%V 351
%N 7-8
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.04.013/
%R 10.1016/j.crma.2013.04.013
%G en
%F CRMATH_2013__351_7-8_261_0
Lazar, Martin; Mitrović, Darko. On an extension of a bilinear functional on $ {\mathrm{L}}^{p}({\mathbf{R}}^{d})\otimes E$ to a Bochner space with an application to velocity averaging. Comptes Rendus. Mathématique, Tome 351 (2013) no. 7-8, pp. 261-264. doi: 10.1016/j.crma.2013.04.013
[1] Spaces of functions with differential-difference characteristics and smoothness of solutions of the transport equation, Sov. Math. Dokl., Volume 29 (1984), pp. 662-666
[2] H-measures and variants applied to parabolic equations, J. Math. Anal. Appl., Volume 343 (2008), pp. 207-225
[3] H-distributions: an extension of H-measures to an setting, Abstr. Appl. Anal., Volume 2011 (2011) (12 pp)
[4] Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, Volume 42 (2001), pp. 211-240
[5] Entropy solution theory for fractional degenerate convection–diffusion equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011), pp. 413-441
[6] Global solutions of Boltzmann equations and the entropy inequality, Arch. Ration. Mech. Anal., Volume 114 (1991), pp. 47-55
[7] regularity of velocity averages, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 8 (1991), pp. 271-287
[8] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1761-1794
[9] Classical Fourier Analysis, Grad. Texts in Math., vol. 249, Springer Science and Business Media, LLC, 2008
[10] The velocity averaging for a heterogeneous heat type equation, Math. Commun., Volume 16 (2011), pp. 271-282
[11] Velocity averaging – a general framework, Dyn. Partial Differ. Equ., Volume 3 (2012), pp. 239-260
[12] A kinetic formulation of multidimensional scalar conservation law and related equations, J. Am. Math. Soc., Volume 7 (1994), pp. 169-191
[13] A limiting case for velocity averaging, Ann. Sci. Éc. Norm. Super., Volume 4 (1998), pp. 591-598
[14] Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear partial differential equations, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1488-1521
[15] H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. R. Soc. Edinb. A, Volume 115 (1990), pp. 193-230
Cité par Sources :





