[Lʼinvariant dʼAlexander détecte le nœud trivial]
The aim of this note is to prove that the -Alexander invariant, a knot invariant defined using -torsions, detects the unknot.
Le but de cette note est de démontrer que lʼinvariant dʼAlexander , un invariant de nœuds défini via des torsions , détecte le nœud trivial.
Accepté le :
Publié le :
Ben Aribi, Fathi 1
@article{CRMATH_2013__351_5-6_215_0,
author = {Ben Aribi, Fathi},
title = {The $ {L}^{2}${-Alexander} invariant detects the unknot},
journal = {Comptes Rendus. Math\'ematique},
pages = {215--219},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {5-6},
doi = {10.1016/j.crma.2013.03.009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.03.009/}
}
TY - JOUR
AU - Ben Aribi, Fathi
TI - The $ {L}^{2}$-Alexander invariant detects the unknot
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 215
EP - 219
VL - 351
IS - 5-6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2013.03.009/
DO - 10.1016/j.crma.2013.03.009
LA - en
ID - CRMATH_2013__351_5-6_215_0
ER -
%0 Journal Article
%A Ben Aribi, Fathi
%T The $ {L}^{2}$-Alexander invariant detects the unknot
%J Comptes Rendus. Mathématique
%D 2013
%P 215-219
%V 351
%N 5-6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.03.009/
%R 10.1016/j.crma.2013.03.009
%G en
%F CRMATH_2013__351_5-6_215_0
Ben Aribi, Fathi. The $ {L}^{2}$-Alexander invariant detects the unknot. Comptes Rendus. Mathématique, Tome 351 (2013) no. 5-6, pp. 215-219. doi: 10.1016/j.crma.2013.03.009
[1] 3-Manifold groups, 2012 | arXiv
[2] Elliptic operators, discrete groups and von Neumann algebras, Orsay, 1974 (Astérisque), Volume vols. 32–33, Soc. Math. France, Paris (1976), pp. 43-72
[3] Knots, de Gruyter Stud. Math., vol. 5, Walter de Gruyter, 2003
[4] J. Dubois, S. Friedl, The -Alexander torsion, in preparation.
[5] J. Dubois, C. Wegner, -Alexander invariant for knots, in preparation.
[6] An -Alexander invariant for knots, Commun. Contemp. Math., Volume 8 (2006) no. 2, pp. 167-187
[7] -Invariants: Theory and Applications to Geometry and K-Theory, Ergeb. Math. Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin, 2002
[8] A duality theorem for Reidemeister torsion, Ann. Math., Volume 76 (1962), pp. 134-147
[9] The colored Jones polynomials and the simplicial volume of a knot, Acta Math., Volume 186 (2001), pp. 85-104
Cité par Sources :





