[Propriétés de courbure des variétés anti-Kähler–Codazzi]
In this paper we shall consider a new class of integrable almost anti-Hermitian manifolds, which will be called anti-Kähler–Codazzi manifolds, and we will investigate their curvature properties.
Dans cet article, nous allons considérer une nouvelle classe de variétés intégrables presque anti-hermitiennes qui seront appelées variétés anti-Kähler–Codazzi, et nous allons étudier les propriétés de courbure de ces variétés.
Accepté le :
Publié le :
Salimov, Arif 1 ; Turanli, Sibel 2
@article{CRMATH_2013__351_5-6_225_0,
author = {Salimov, Arif and Turanli, Sibel},
title = {Curvature properties of {anti-K\"ahler{\textendash}Codazzi} manifolds},
journal = {Comptes Rendus. Math\'ematique},
pages = {225--227},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {5-6},
doi = {10.1016/j.crma.2013.03.008},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.03.008/}
}
TY - JOUR AU - Salimov, Arif AU - Turanli, Sibel TI - Curvature properties of anti-Kähler–Codazzi manifolds JO - Comptes Rendus. Mathématique PY - 2013 SP - 225 EP - 227 VL - 351 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.03.008/ DO - 10.1016/j.crma.2013.03.008 LA - en ID - CRMATH_2013__351_5-6_225_0 ER -
%0 Journal Article %A Salimov, Arif %A Turanli, Sibel %T Curvature properties of anti-Kähler–Codazzi manifolds %J Comptes Rendus. Mathématique %D 2013 %P 225-227 %V 351 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.03.008/ %R 10.1016/j.crma.2013.03.008 %G en %F CRMATH_2013__351_5-6_225_0
Salimov, Arif; Turanli, Sibel. Curvature properties of anti-Kähler–Codazzi manifolds. Comptes Rendus. Mathématique, Tome 351 (2013) no. 5-6, pp. 225-227. doi: 10.1016/j.crma.2013.03.008
[1] On Kähler–Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., Volume 119 (2009) no. 1, pp. 71-80
[2] On Lie groups as quasi-Kähler manifolds with Killing Norden metric, Adv. Geom., Volume 8 (2008) no. 3, pp. 343-352
[3] On operators associated with tensor fields, J. Geom., Volume 99 (2010) no. 1–2, pp. 107-145
[4] Analytic tensor and its generalization, Tohoku Math. J., Volume 12 (1960) no. 2, pp. 208-221
Cité par Sources :





