[Un contre-exemple explicite pour le problème de la régularité maximale ]
In this short Note we give a self-contained example of a consistent family of holomorphic semigroups such that does not have maximal regularity for . This answers negatively the open question whether maximal regularity extrapolates from to the -scale.
Dans cette Note, nous démontrons lʼexistence dʼune famille de semi-groupes holomorphes telle que nʼa pas la régularité maximale pour . De cette façon, nous répondons négativement à la question ouverte qui consiste à savoir si la régularité maximale extrapole entre et .
Accepté le :
Publié le :
Fackler, Stephan 1
@article{CRMATH_2013__351_1-2_53_0,
author = {Fackler, Stephan},
title = {An explicit counterexample for the $ {L}^{p}$-maximal regularity problem},
journal = {Comptes Rendus. Math\'ematique},
pages = {53--56},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {1-2},
doi = {10.1016/j.crma.2013.01.013},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.01.013/}
}
TY - JOUR
AU - Fackler, Stephan
TI - An explicit counterexample for the $ {L}^{p}$-maximal regularity problem
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 53
EP - 56
VL - 351
IS - 1-2
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2013.01.013/
DO - 10.1016/j.crma.2013.01.013
LA - en
ID - CRMATH_2013__351_1-2_53_0
ER -
%0 Journal Article
%A Fackler, Stephan
%T An explicit counterexample for the $ {L}^{p}$-maximal regularity problem
%J Comptes Rendus. Mathématique
%D 2013
%P 53-56
%V 351
%N 1-2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.01.013/
%R 10.1016/j.crma.2013.01.013
%G en
%F CRMATH_2013__351_1-2_53_0
Fackler, Stephan. An explicit counterexample for the $ {L}^{p}$-maximal regularity problem. Comptes Rendus. Mathématique, Tome 351 (2013) no. 1-2, pp. 53-56. doi: 10.1016/j.crma.2013.01.013
[1] Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006
[2] Semigroups and evolution equations: functional calculus, regularity and kernel estimates, Evolutionary Equations, vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 1-85
[3] -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., Volume 166 (2003) (No. 788, viii+114)
[4] Absolutely Summing Operators, Cambridge Stud. Adv. Math., vol. 43, Cambridge University Press, Cambridge, 1995
[5] regularity for abstract differential equations, Kyoto, 1991 (Lecture Notes in Math.), Volume vol. 1540, Springer, Berlin (1993), pp. 25-38
[6] Unʼapplicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Semin. Mat. Univ. Padova, Volume 34 (1964), pp. 205-223
[7] The Kalton–Lancien theorem revisited: maximal regularity does not extrapolate, 2012 | arXiv
[8] A solution to the problem of -maximal regularity, Math. Z., Volume 235 (2000) no. 3, pp. 559-568
[9] Maximal -regularity for parabolic equations, Fourier multiplier theorems and -functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65-311
[10] Bases in Banach Spaces. I, Grundlehren Math. Wiss., vol. 154, Springer-Verlag, New York, 1970
[11] A counterexample concerning imaginary powers of linear operators, Kyoto, 1991 (Lecture Notes in Math.), Volume vol. 1540, Springer, Berlin (1993), pp. 381-387
[12] Operator-valued Fourier multiplier theorems and maximal -regularity, Math. Ann., Volume 319 (2001) no. 4, pp. 735-758
Cité par Sources :





