The purpose of this Note is to prove sharp Strichartz estimates with derivative losses for the non-elliptic Schrödinger equation posed on the 2-dimensional torus.
Le but de cette Note est de démontrer des estimations de Strichartz optimales avec pertes de dérivées pour lʼéquation de Schrödinger non-elliptique posée sur le tore de dimension 2.
Accepted:
Published online:
@article{CRMATH_2012__350_21-22_955_0, author = {Godet, Nicolas and Tzvetkov, Nikolay}, title = {Strichartz estimates for the periodic non-elliptic {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {955--958}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.029}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2012.10.029/} }
TY - JOUR AU - Godet, Nicolas AU - Tzvetkov, Nikolay TI - Strichartz estimates for the periodic non-elliptic Schrödinger equation JO - Comptes Rendus. Mathématique PY - 2012 SP - 955 EP - 958 VL - 350 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.10.029/ DO - 10.1016/j.crma.2012.10.029 LA - en ID - CRMATH_2012__350_21-22_955_0 ER -
%0 Journal Article %A Godet, Nicolas %A Tzvetkov, Nikolay %T Strichartz estimates for the periodic non-elliptic Schrödinger equation %J Comptes Rendus. Mathématique %D 2012 %P 955-958 %V 350 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.10.029/ %R 10.1016/j.crma.2012.10.029 %G en %F CRMATH_2012__350_21-22_955_0
Godet, Nicolas; Tzvetkov, Nikolay. Strichartz estimates for the periodic non-elliptic Schrödinger equation. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 955-958. doi : 10.1016/j.crma.2012.10.029. https://www.numdam.org/articles/10.1016/j.crma.2012.10.029/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156
[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004), pp. 569-605
[3] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005), pp. 187-223
[4] The Schrödinger equation type with a nonelliptic operator, Comm. Partial Differential Equations, Volume 32 (2007) no. 1–3, pp. 209-228
[5] Y. Wang, Periodic cubic hyperbolic Schrödinger equation on , preprint.
Cited by Sources: