[Échantillonage dans un espace de Sobolev avec poids]
We show that functions f in some weighted Sobolev space are completely determined by time-frequency samples along appropriate slowly increasing sequences and tending to ±∞ as .
Nous démontrons que toute fonction f dans un certain espace de Sobolev avec poids est complètement determinée par un échantillon sur des convenables suites croissantes et , tendant vers ±∞ lentement, quand .
Accepté le :
Publié le :
Acala, Nestor G. 1 ; Reyes, Noli N. 1
@article{CRMATH_2012__350_21-22_941_0,
author = {Acala, Nestor G. and Reyes, Noli N.},
title = {Sampling in a weighted {Sobolev} space},
journal = {Comptes Rendus. Math\'ematique},
pages = {941--944},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {21-22},
doi = {10.1016/j.crma.2012.10.028},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.10.028/}
}
TY - JOUR AU - Acala, Nestor G. AU - Reyes, Noli N. TI - Sampling in a weighted Sobolev space JO - Comptes Rendus. Mathématique PY - 2012 SP - 941 EP - 944 VL - 350 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.10.028/ DO - 10.1016/j.crma.2012.10.028 LA - en ID - CRMATH_2012__350_21-22_941_0 ER -
%0 Journal Article %A Acala, Nestor G. %A Reyes, Noli N. %T Sampling in a weighted Sobolev space %J Comptes Rendus. Mathématique %D 2012 %P 941-944 %V 350 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.10.028/ %R 10.1016/j.crma.2012.10.028 %G en %F CRMATH_2012__350_21-22_941_0
Acala, Nestor G.; Reyes, Noli N. Sampling in a weighted Sobolev space. Comptes Rendus. Mathématique, Tome 350 (2012) no. 21-22, pp. 941-944. doi: 10.1016/j.crma.2012.10.028
[1] Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., Volume 43 (2001), pp. 585-620
[2] Interpolation and sampling: E.T. Whittaker, K. Ogura and their followers, J. Fourier Anal. Appl., Volume 17 (2010), pp. 320-354
[3] Uncertainty principles and signal recovery, SIAM J. Appl. Math., Volume 49 (1990), pp. 906-931
[4] Theory and practice of irregular sampling, Wavelets: Mathematics and Applications, Stud. Adv. Math., CRC, Boca Raton, 1994, pp. 305-363
[5] Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type, Math. Comp., Volume 68 (1999), pp. 749-765
[6] The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994
[7] Ondelettes et Opérateurs, Hermann, Paris, 1990
[8] Rapidly growing Fourier integrals, Amer. Math. Month., Volume 108 (2001), pp. 636-641
[9] Zeros of the Fourier transform of a distribution, J. Math. Anal. Appl., Volume 154 (1989), pp. 77-91
Cité par Sources :





