[Surfaces de courbure moyenne nulle dans contenant des droites de type lumière]
It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz–Minkowski 3-space have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.
Il est bien connu que les surfaces maximales de type espace et les surfaces minimales de type temps dans lʼespace de Lorentz–Minkowski de dimension 3 possèdent en général des singularités. Ces deux types sont caracterisés comme des surfaces de courbure moyenne nulle. La Note considère le cas où le lieu des singularités consiste en une droite de type lumière, cette situation nʼayant semble-t-il pas encore été analysée. Dans cette Note, nous donnons de nouveaux exemples de telles surfaces.
Accepté le :
Publié le :
Fujimori, S. 1 ; Kim, Y.W. 2 ; Koh, S.-E. 3 ; Rossman, W. 4 ; Shin, H. 5 ; Takahashi, H. 6 ; Umehara, M. 7 ; Yamada, K. 8 ; Yang, S.-D. 2
@article{CRMATH_2012__350_21-22_975_0,
author = {Fujimori, S. and Kim, Y.W. and Koh, S.-E. and Rossman, W. and Shin, H. and Takahashi, H. and Umehara, M. and Yamada, K. and Yang, S.-D.},
title = {Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line},
journal = {Comptes Rendus. Math\'ematique},
pages = {975--978},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {21-22},
doi = {10.1016/j.crma.2012.10.024},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.10.024/}
}
TY - JOUR
AU - Fujimori, S.
AU - Kim, Y.W.
AU - Koh, S.-E.
AU - Rossman, W.
AU - Shin, H.
AU - Takahashi, H.
AU - Umehara, M.
AU - Yamada, K.
AU - Yang, S.-D.
TI - Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line
JO - Comptes Rendus. Mathématique
PY - 2012
SP - 975
EP - 978
VL - 350
IS - 21-22
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2012.10.024/
DO - 10.1016/j.crma.2012.10.024
LA - en
ID - CRMATH_2012__350_21-22_975_0
ER -
%0 Journal Article
%A Fujimori, S.
%A Kim, Y.W.
%A Koh, S.-E.
%A Rossman, W.
%A Shin, H.
%A Takahashi, H.
%A Umehara, M.
%A Yamada, K.
%A Yang, S.-D.
%T Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line
%J Comptes Rendus. Mathématique
%D 2012
%P 975-978
%V 350
%N 21-22
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2012.10.024/
%R 10.1016/j.crma.2012.10.024
%G en
%F CRMATH_2012__350_21-22_975_0
Fujimori, S.; Kim, Y.W.; Koh, S.-E.; Rossman, W.; Shin, H.; Takahashi, H.; Umehara, M.; Yamada, K.; Yang, S.-D. Zero mean curvature surfaces in $ {\mathbf{L}}^{3}$ containing a light-like line. Comptes Rendus. Mathématique, Tome 350 (2012) no. 21-22, pp. 975-978. doi: 10.1016/j.crma.2012.10.024
[1] Generalized maximal surfaces in Lorentz–Minkowski space , Math. Proc. Cambridge Philos. Soc., Volume 111 (1992), pp. 515-524
[2] S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H.‘Shin, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in Lorentz–Minkowski 3-space which change type across a light-like line, preprint.
[3] New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math., Volume 56 (2009), pp. 41-82
[4] The extremal surfaces in the 3-dimensional Minkowski space, Acta Math. Sinica, Volume 1 (1985), pp. 173-180
[5] Timelike minimal surfaces via loop groups, Acta Appl. Math., Volume 83 (2004), pp. 313-335
[6] A family of maximal surfaces in Lorentz–Minkowski three-space, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 3379-3390
[7] Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007), pp. 2167-2177
[8] Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae, J. Korean Math. Soc., Volume 48 (2011), pp. 1083-1100
[9] Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math., Volume 67 (2003), pp. 209-224
[10] Maximal surfaces in the 3-dimensional Minkowski space , Tokyo J. Math., Volume 6 (1983), pp. 297-309
[11] Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006), pp. 13-40
Cité par Sources :





