[Structures de Hodge et fonction σ de Weierstrass]
In this Note we introduce new definition of Hodge structures and show that -Hodge structures are determined by -linear operators that are annihilated by the Weierstrass σ-function.
Dans cette Note, nous introduisons une nouvelle définition des structures de Hodge et démontrons que les structures de Hodge sur sont déterminées par des transformations -linéaires qui sont des zéros de la fonction σ de Weierstrass.
Accepté le :
Publié le :
Banaszak, Grzegorz 1 ; Milewski, Jan 2
@article{CRMATH_2012__350_15-16_777_0,
author = {Banaszak, Grzegorz and Milewski, Jan},
title = {Hodge structures and {Weierstrass} \protect\emph{\ensuremath{\sigma}}-function},
journal = {Comptes Rendus. Math\'ematique},
pages = {777--780},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {15-16},
doi = {10.1016/j.crma.2012.09.012},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.09.012/}
}
TY - JOUR AU - Banaszak, Grzegorz AU - Milewski, Jan TI - Hodge structures and Weierstrass σ-function JO - Comptes Rendus. Mathématique PY - 2012 SP - 777 EP - 780 VL - 350 IS - 15-16 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.09.012/ DO - 10.1016/j.crma.2012.09.012 LA - en ID - CRMATH_2012__350_15-16_777_0 ER -
%0 Journal Article %A Banaszak, Grzegorz %A Milewski, Jan %T Hodge structures and Weierstrass σ-function %J Comptes Rendus. Mathématique %D 2012 %P 777-780 %V 350 %N 15-16 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.09.012/ %R 10.1016/j.crma.2012.09.012 %G en %F CRMATH_2012__350_15-16_777_0
Banaszak, Grzegorz; Milewski, Jan. Hodge structures and Weierstrass σ-function. Comptes Rendus. Mathématique, Tome 350 (2012) no. 15-16, pp. 777-780. doi: 10.1016/j.crma.2012.09.012
[1] Hodge structures in topological quantum mechanics, J. Phys. Conf. Ser., Volume 213 (2010), p. 012017
[2] A survey of the Hodge conjecture for abelian varieties (Lewis, J., ed.), A Survey of the Hodge Conjecture, American Mathematical Society, 1999, pp. 297-356 (Appendix B)
[3] Holomorphons and the standard almost complex structure on , Comment. Math., Volume XLVI (2006) no. 2, pp. 245-254
[4] Holomorphons on spheres, Comment. Math., Volume B XLVIII (2008) no. 2, pp. 13-22
[5] Mixed Hodge Structures, Ergeb. Math. Grenzgeb., vol. 52, Springer, 2008
Cité par Sources :





