[Semi-stabilité des fibrés vectoriels invariants sur , II]
Let G be a connected complex Lie group, and let Γ be a cocompact discrete subgroup of G. We prove that any invariant principal bundle on is semistable with respect to any Hermitian structure on given by some right-translation invariant Hermitian structure on G.
Soit G un groupe de Lie connexe sur , et soit un sous-groupe discret cocompact. Nous démontrons que tout fibré vectoriel invariant sur est semi-stable par rapport à toute structure hermitienne sur provenant dʼune structure hermitienne sur G invariante par translations à droite.
Accepté le :
Publié le :
Biswas, Indranil 1
@article{CRMATH_2012__350_5-6_277_0,
author = {Biswas, Indranil},
title = {Semistability of invariant bundles over $ G/\Gamma $, {II}},
journal = {Comptes Rendus. Math\'ematique},
pages = {277--280},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {5-6},
doi = {10.1016/j.crma.2012.02.011},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.02.011/}
}
TY - JOUR AU - Biswas, Indranil TI - Semistability of invariant bundles over $ G/\Gamma $, II JO - Comptes Rendus. Mathématique PY - 2012 SP - 277 EP - 280 VL - 350 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.02.011/ DO - 10.1016/j.crma.2012.02.011 LA - en ID - CRMATH_2012__350_5-6_277_0 ER -
%0 Journal Article %A Biswas, Indranil %T Semistability of invariant bundles over $ G/\Gamma $, II %J Comptes Rendus. Mathématique %D 2012 %P 277-280 %V 350 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.02.011/ %R 10.1016/j.crma.2012.02.011 %G en %F CRMATH_2012__350_5-6_277_0
Biswas, Indranil. Semistability of invariant bundles over $ G/\Gamma $, II. Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 277-280. doi: 10.1016/j.crma.2012.02.011
[1] Semistability of invariant bundles over , C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1187-1190
[2] Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15, Iwanami Shoten Publishers and Princeton University Press, 1987
[3] Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York–Heidelberg, 1972
Cité par Sources :





