[Sur la conjecture dʼisométrie bornée]
We prove the bounded isometry conjecture proposed by F. Lalonde and L. Polterovich for a special class of closed symplectic manifolds.
Nous prouvons la conjecture dʼisométrie bornée proposée par F. Lalonde et L. Polterovich pour une classe spéciale de variétés symplectiques fermées.
Accepté le :
Publié le :
Pedroza, Andrés 1
@article{CRMATH_2011__349_19-20_1097_0,
author = {Pedroza, Andr\'es},
title = {On the bounded isometry conjecture},
journal = {Comptes Rendus. Math\'ematique},
pages = {1097--1100},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {19-20},
doi = {10.1016/j.crma.2011.08.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.08.016/}
}
TY - JOUR AU - Pedroza, Andrés TI - On the bounded isometry conjecture JO - Comptes Rendus. Mathématique PY - 2011 SP - 1097 EP - 1100 VL - 349 IS - 19-20 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.08.016/ DO - 10.1016/j.crma.2011.08.016 LA - en ID - CRMATH_2011__349_19-20_1097_0 ER -
Pedroza, Andrés. On the bounded isometry conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1097-1100. doi: 10.1016/j.crma.2011.08.016
[1] C. Campos-Apanco, A. Pedroza, Bounded symplectic diffeomorphisms and split flux groups, Proc. of Amer. Math. Soc., in press.
[2] Bi-invariant metrics on the group of symplectomorphisms, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3343-3357
[3] The bounded isometry conjecture for the Kodaira–Thurston manifold and 4-torus, Israel J. Math., Volume 176 (2010), pp. 285-306
[4] Stabilization of symplectic inequalities and applications, Amer. Math. Soc. Transl., Volume 196 (1999), pp. 63-72
[5] Symplectic diffeomorphisms as isometries of Hoferʼs norm, Topology, Volume 36 (1997), pp. 711-727
[6] Introduction to Symplectic Topology, Oxford University Press, 1994
[7] The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001
Cité par Sources :





