[Champs de gradient à valeurs dans ]
We state the following regularity result: if a two-dimensional gradient vector field with values into the unit circle belongs to (or ) then v is locally Lipschitz except at a locally finite number of vortices. We also state approximation results for such vector fields.
Le résultat de régularité suivant a lieu : Si un champ de gradient est à valeurs dans le cercle unité et appartient à (ou ) alors v est localement Lipschitz en dehors dʼun nombre localement fini de points singuliers. Ensuite, des résultats de densité sont énoncés pour cette classe de champs de gradient.
Accepté le :
Publié le :
Ignat, Radu 1
@article{CRMATH_2011__349_15-16_883_0,
author = {Ignat, Radu},
title = {Gradient vector fields with values into $ {S}^{1}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {883--887},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {15-16},
doi = {10.1016/j.crma.2011.07.024},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.07.024/}
}
TY - JOUR
AU - Ignat, Radu
TI - Gradient vector fields with values into $ {S}^{1}$
JO - Comptes Rendus. Mathématique
PY - 2011
SP - 883
EP - 887
VL - 349
IS - 15-16
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2011.07.024/
DO - 10.1016/j.crma.2011.07.024
LA - en
ID - CRMATH_2011__349_15-16_883_0
ER -
Ignat, Radu. Gradient vector fields with values into $ {S}^{1}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 883-887. doi: 10.1016/j.crma.2011.07.024
[1] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[2] maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 1-115
[3] -maps with values into , Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100
[4] Lifting of BV functions with values in , C. R. Math. Acad. Sci. Paris, Volume 337 (2003), pp. 159-164
[5] 2-d stability of the Néel wall, Calc. Var. Partial Differential Equations, Volume 27 (2006), pp. 233-253
[6] A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1408-1460
[7] Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998
[8] Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125
[9] The space : minimal connection and optimal lifting, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 283-302
[10] R. Ignat, Two-dimensional unit-length vector fields of vanishing divergence, submitted for publication.
[11] Vortex energy and 360° Néel walls in thin-film micromagnetics, Comm. Pure Appl. Math., Volume 63 (2010), pp. 1677-1724
[12] A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 909-956
[13] Line-energy Ginzburg–Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 1 (2002), pp. 187-202
[14] Dense subsets of , Ann. Global Anal. Geom., Volume 18 (2000), pp. 517-528
Cité par Sources :





