[Sur un critère de comparaison de type de Liouville pour des sous- et super-solutions entières de lʼéquation ]
We establish a Liouville comparison principle for entire sub- and super-solutions of the equation in the half-space , where , and , . In our study we impose neither restrictions on the behaviour of entire sub- and super-solutions on the hyper-plane , nor any growth conditions on their behaviour or on that of any of their partial derivatives at infinity. We prove that if , and u and v are, respectively, an entire weak super-solution and an entire weak sub-solution of (⁎) in which belong, only locally in , to the corresponding Sobolev space and are such that , then . The result is sharp. As direct corollaries we obtain both new and known Fujita-type and Liouville-type results.
Nous établissons un critère de comparaison de type de Liouville pour des sous- et super-solutions entières de lʼéquation dans le demi-espace , où , et , . Dans notre étude, nous nʼimposons ni des restrictions sur le comportement des sous- ou super-solutions entières sur le hyper-plan , ni des conditions de croissance sur le comportement à lʼinfini de ces solutions ou de leurs dérivées partielles. Nous démontrons que si , et u et v constituent, respectivement, une super-solution faible entière et une sous-solution faible entière de (⁎) dans qui appartiennent, localement en , à lʼespace de Sobolev approprié, et qui sont telles que , alors . Ce résultat est précis. Comme corollaires immédiats, nous obtenons des nouveaux résultats, ainsi que des résultats connus de type Fujita et Liouville.
Accepté le :
Publié le :
Kurta, Vasilii V. 1
@article{CRMATH_2011__349_13-14_773_0,
author = {Kurta, Vasilii V.},
title = {A {Liouville} comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$},
journal = {Comptes Rendus. Math\'ematique},
pages = {773--776},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {13-14},
doi = {10.1016/j.crma.2011.06.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.06.006/}
}
TY - JOUR
AU - Kurta, Vasilii V.
TI - A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$
JO - Comptes Rendus. Mathématique
PY - 2011
SP - 773
EP - 776
VL - 349
IS - 13-14
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2011.06.006/
DO - 10.1016/j.crma.2011.06.006
LA - en
ID - CRMATH_2011__349_13-14_773_0
ER -
%0 Journal Article
%A Kurta, Vasilii V.
%T A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$
%J Comptes Rendus. Mathématique
%D 2011
%P 773-776
%V 349
%N 13-14
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.06.006/
%R 10.1016/j.crma.2011.06.006
%G en
%F CRMATH_2011__349_13-14_773_0
Kurta, Vasilii V. A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 773-776. doi: 10.1016/j.crma.2011.06.006
[1] A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., Volume 34 (1998) no. 7, pp. 1005-1027
[2] On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109-124
[3] On a comparison principle and the critical Fujita exponents for solutions of semilinear parabolic inequalities, J. London Math. Soc. (2), Volume 66 (2002) no. 2, pp. 351-360
[4] A Liouville comparison principle for solutions of semilinear elliptic partial differential inequalities, Proc. Roy. Soc. Edinburgh Sect. A, Volume 138 (2008) no. 1, pp. 139-155
[5] Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Sér. I, Volume 322 (1996), pp. 1175-1180
Cité par Sources :





