Partial Differential Equations
Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
[Une onde progressive peut-elle connecter deux équilibres instables ? Le cas de lʼéquation de Fisher non-locale]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 553-557

This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.

Nous étudions dans cette Note les propriétés des solutions de type ondes progressives pour lʼéquation de Fisher non-locale. Lʼexistence de telles solutions a été prouvée récemment dans Berestycki et al. (2009) [3] mais leur comportement asymptotique était encore mal compris. Nous développons ici une nouvelle méthode dʼapproximation numérique montrant que certaines ondes progressives connectent les deux états dʼéquilibre homogènes 0 et 1, ce qui est surprenant puisque 0 est dynamiquement instable et 1 est instable au sens de Turing.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.008

Nadin, Grégoire 1 ; Perthame, Benoît 1, 2 ; Tang, Min 1, 2

1 UPMC, CNRS UMR 7598, laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
2 INRIA Paris-Rocquencourt, équipe BANG, domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay, France
@article{CRMATH_2011__349_9-10_553_0,
     author = {Nadin, Gr\'egoire and Perthame, Beno{\^\i}t and Tang, Min},
     title = {Can a traveling wave connect two unstable states? {The} case of the nonlocal {Fisher} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {553--557},
     year = {2011},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     doi = {10.1016/j.crma.2011.03.008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2011.03.008/}
}
TY  - JOUR
AU  - Nadin, Grégoire
AU  - Perthame, Benoît
AU  - Tang, Min
TI  - Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 553
EP  - 557
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2011.03.008/
DO  - 10.1016/j.crma.2011.03.008
LA  - en
ID  - CRMATH_2011__349_9-10_553_0
ER  - 
%0 Journal Article
%A Nadin, Grégoire
%A Perthame, Benoît
%A Tang, Min
%T Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
%J Comptes Rendus. Mathématique
%D 2011
%P 553-557
%V 349
%N 9-10
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.03.008/
%R 10.1016/j.crma.2011.03.008
%G en
%F CRMATH_2011__349_9-10_553_0
Nadin, Grégoire; Perthame, Benoît; Tang, Min. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 553-557. doi: 10.1016/j.crma.2011.03.008

[1] Apreutesei, N.; Bessonov, N.; Volpert, V.; Vougalter, V. Spatial structures and generalized travelling waves for an integro-differential equation, Discrete Contin. Dynam. Systems: Ser. B, Volume 13 (2010) no. 3, pp. 537-557

[2] Berestycki, H.; Hamel, F. Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032

[3] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L. The non-local Fisher–KPP equation: traveling waves and steady states, Nonlinearity, Volume 22 (2009), pp. 2813-2844

[4] Genieys, S.; Volpert, V.; Auger, P. Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Modelling Nat. Phenom., Volume 1 (2006), pp. 65-82

[5] Gourley, S.A. Travelling front solutions of a nonlocal Fisher equation (3), J. Math. Biol., Volume 41 (2000) no. 3

[6] Kolmogorov, A.N.; Petrovsky, I.G.; Piskunov, N.S. Etude de lʼéquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université dʼEtat à Moscou (1937), pp. 1-26

[7] Shigesada, N.; Kawasaki, K.; Teramoto, E. Traveling periodic waves in heterogeneous environments, Theor. Population Biol., Volume 30 (1986), pp. 143-160

Cité par Sources :