Geometry
On almost complex structures which are not compatible with symplectic forms
Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 429-431.

In this Note we prove that the underlying almost complex structure to a non-Kähler almost Hermitian structure admitting a compatible connection with skew-symmetric torsion cannot be calibrated by a symplectic form even locally.

Dans cette Note on démontre que la structure presque complexe sous-jacente à une structure presque hermitienne non kälérienne admettant une connexion compatible avec une torsion antisymétrique ne peut pas, même localement, être calibrée par une forme symplectique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.01.002
Vezzoni, Luigi 1

1 Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
@article{CRMATH_2011__349_7-8_429_0,
     author = {Vezzoni, Luigi},
     title = {On almost complex structures which are not compatible with symplectic forms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {429--431},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.002},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2011.01.002/}
}
TY  - JOUR
AU  - Vezzoni, Luigi
TI  - On almost complex structures which are not compatible with symplectic forms
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 429
EP  - 431
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2011.01.002/
DO  - 10.1016/j.crma.2011.01.002
LA  - en
ID  - CRMATH_2011__349_7-8_429_0
ER  - 
%0 Journal Article
%A Vezzoni, Luigi
%T On almost complex structures which are not compatible with symplectic forms
%J Comptes Rendus. Mathématique
%D 2011
%P 429-431
%V 349
%N 7-8
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.01.002/
%R 10.1016/j.crma.2011.01.002
%G en
%F CRMATH_2011__349_7-8_429_0
Vezzoni, Luigi. On almost complex structures which are not compatible with symplectic forms. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 429-431. doi : 10.1016/j.crma.2011.01.002. https://www.numdam.org/articles/10.1016/j.crma.2011.01.002/

[1] Bryant, R.L. On the geometry of almost complex 6-manifolds, Asian J. Math., Volume 10 (2006) no. 3, pp. 561-605

[2] Bryant, R.L. Submanifolds and special structures on the octonions, J. Differential Geom., Volume 17 (1982) no. 2, pp. 185-232

[3] Friedrich, Th.; Ivanov, S. Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., Volume 6 (2002), pp. 303-335

[4] Lejmi, M. Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 11–12, pp. 759-762

[5] Newlander, A.; Nirenberg, L. Complex analytic coordinates in almost complex manifolds, Ann. Math. (2), Volume 65 (1957), pp. 391-404

[6] Rivière, T.; Tian, G. The singular set of J-holomorphic maps into projective algebraic varieties, J. Reine Angew. Math., Volume 570 (2004), pp. 47-87

[7] Rivière, T.; Tian, G. The singular set of 11 integral currents, Ann. Math. (2), Volume 169 (2009) no. 3, pp. 741-794

[8] Sikorav, J.-C. Holomorphic Curves in Symplectic Geometry (Audin, F. et al., eds.), Progress in Math., vol. 117, Birkhäuser, 1994

[9] Tomassini, A. Some examples of non calibrable almost complex structures, Forum Math., Volume 14 (2002), pp. 869-876

Cited by Sources:

This work was supported by the Project M.I.U.R. “Riemannian Metrics and Differentiable Manifolds” and by G.N.S.A.G.A. of I.N.d.A.M.