Mathematical Analysis
Multiplier sequences and logarithmic mesh
Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 35-38.

In this Note we prove a new result about (finite) multiplier sequences, i.e. linear operators acting diagonally in the standard monomial basis of R[x] and sending polynomials with all real roots to polynomials with all real roots. Namely, we show that any such operator does not decrease the logarithmic mesh when acting on an arbitrary polynomial having all roots real and of the same sign. The logarithmic mesh of such a polynomial is defined as the minimal quotient of its consecutive roots taken in the non-decreasing order of their absolute values.

Les multiplicateurs considérés dans cette Note sont les opérateurs linéaires qui agissent diagonalement sur R[x] muni de sa base standard (les monômes) et qui transforment les polynômes à racines réelles en polynômes à racines réelles. Nous montrons qu'un tel opérateur, appliqué à un polynôme dont toutes les racines sont réelles et de même signe, ne diminue pas la maille logarithmique, c'est-à-dire le minimum du quotient de deux racines consécutives dans l'ordre croissant des valeurs absolues.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.11.031
Katkova, Olga 1; Shapiro, Boris 2; Vishnyakova, Anna 1

1 Department of Mechanics & Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
2 Department of Mathematics, Stockholm University, 10691, Stockholm, Sweden
@article{CRMATH_2011__349_1-2_35_0,
     author = {Katkova, Olga and Shapiro, Boris and Vishnyakova, Anna},
     title = {Multiplier sequences and logarithmic mesh},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {35--38},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.031},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/}
}
TY  - JOUR
AU  - Katkova, Olga
AU  - Shapiro, Boris
AU  - Vishnyakova, Anna
TI  - Multiplier sequences and logarithmic mesh
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 35
EP  - 38
VL  - 349
IS  - 1-2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/
DO  - 10.1016/j.crma.2010.11.031
LA  - en
ID  - CRMATH_2011__349_1-2_35_0
ER  - 
%0 Journal Article
%A Katkova, Olga
%A Shapiro, Boris
%A Vishnyakova, Anna
%T Multiplier sequences and logarithmic mesh
%J Comptes Rendus. Mathématique
%D 2011
%P 35-38
%V 349
%N 1-2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/
%R 10.1016/j.crma.2010.11.031
%G en
%F CRMATH_2011__349_1-2_35_0
Katkova, Olga; Shapiro, Boris; Vishnyakova, Anna. Multiplier sequences and logarithmic mesh. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 35-38. doi : 10.1016/j.crma.2010.11.031. https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/

[1] Borcea, J.; Brändén, P. Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009) no. 1, pp. 465-492

[2] Craven, T.; Csordas, G. Problems and theorems in the theory of multiplier sequences, Serdica Math. J., Volume 22 (1996), pp. 515-524

[3] Craven, T.; Csordas, G. Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977) no. 4, pp. 801-817

[4] Obreschkov, N. Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963

[5] Pólya, G.; Schur, J. Über zwei Arten von Faktorenfolgen in der Theorie der algebraische Gleichungen, J. Reine Angew. Math., Volume 144 (1914), pp. 89-113

[6] Stoyanoff, A. Sur un theoreme de M. Marcel Riesz, Nouv. Ann. Math., Volume 1 (1926), pp. 97-99

[7] Szegő, G. Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. (2), Volume 13 (1922), pp. 28-55

Cited by Sources: