Complex Analysis/Number Theory
An abc theorem on the disk
[Un théorème du type abc sur le disque]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1259-1261

We extend the classical abc theorem for polynomials (also known as Mason's, or Mason–Stothers', theorem) to general analytic functions on the disk.

On généralise le « théorème abc » sur les polynômes (alias le théorème de Mason–Stothers) au cas des fonctions analytiques arbitraires sur le disque.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.030

Dyakonov, Konstantin M. 1

1 ICREA and Universitat de Barcelona, Departament de Matemàtica Aplicada i Anàlisi, Gran Via 585, 08007 Barcelona, Spain
@article{CRMATH_2010__348_23-24_1259_0,
     author = {Dyakonov, Konstantin M.},
     title = {An \protect\emph{abc} theorem on the disk},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1259--1261},
     year = {2010},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     doi = {10.1016/j.crma.2010.10.030},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2010.10.030/}
}
TY  - JOUR
AU  - Dyakonov, Konstantin M.
TI  - An abc theorem on the disk
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1259
EP  - 1261
VL  - 348
IS  - 23-24
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2010.10.030/
DO  - 10.1016/j.crma.2010.10.030
LA  - en
ID  - CRMATH_2010__348_23-24_1259_0
ER  - 
%0 Journal Article
%A Dyakonov, Konstantin M.
%T An abc theorem on the disk
%J Comptes Rendus. Mathématique
%D 2010
%P 1259-1261
%V 348
%N 23-24
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.10.030/
%R 10.1016/j.crma.2010.10.030
%G en
%F CRMATH_2010__348_23-24_1259_0
Dyakonov, Konstantin M. An abc theorem on the disk. Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1259-1261. doi: 10.1016/j.crma.2010.10.030

[1] Carleson, L. A representation formula for the Dirichlet integral, Math. Z., Volume 73 (1960), pp. 190-196

[2] Dyakonov, K.M. Factorization of smooth analytic functions via Hilbert–Schmidt operators, St. Petersburg Math. J., Volume 8 (1997), pp. 543-569

[3] Dyakonov, K.M. Local abc theorems for analytic functions | arXiv

[4] Granville, A.; Tucker, T.J. It's as easy as abc, Notices Amer. Math. Soc., Volume 49 (2002), pp. 1224-1231

[5] Gundersen, G.G.; Hayman, W.K. The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc., Volume 36 (2004), pp. 433-454

[6] Lang, S. Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. (N.S.), Volume 23 (1990), pp. 37-75

[7] Sheil-Small, T. Complex Polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002

[8] Stothers, W.W. Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford Ser. (2), Volume 32 (1981), pp. 349-370

[9] Vinogradov, S.A.; Shirokov, N.A. The factorization of analytic functions with derivative in Hp, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 22 (1971), pp. 8-27 (in Russian)

Cité par Sources :

Supported in part by grant MTM2008-05561-C02-01 from El Ministerio de Ciencia e Innovación (Spain) and grant 2009-SGR-1303 from AGAUR (Generalitat de Catalunya).