[Les puissances extérieures de la représentation géométrique dans la cohomologie des fibres de Springer]
Let be the cohomology of the Springer fibre for the nilpotent element e in a simple Lie algebra . Let denote the ith exterior power of the reflection representation of W. We determine the degrees in which occurs in the graded representation , under the assumption that e is regular in a Levi subalgebra and satisfies a certain extra condition which holds automatically if is of type A, B, or C. This partially verifies a conjecture of Lehrer and Shoji.
Soit la cohomologie de la fibre de Springer pour l'élément nilpotent e de l'algèbre de Lie simple . Soit la i-ème puissance extérieure de la représentation géométrique de W. Nous trouvons les degrés des contributions de à la représentation graduée , si e est régulier dans une sous-algèbre de Levi et satisfait à une autre condition qui est vraie si est de type A, B, ou C. Ce résultat démontre partiellement une conjecture de Lehrer et Shoji.
Accepté le :
Publié le :
Henderson, Anthony 1
@article{CRMATH_2010__348_19-20_1055_0,
author = {Henderson, Anthony},
title = {Exterior powers of the reflection representation in the cohomology of {Springer} fibres},
journal = {Comptes Rendus. Math\'ematique},
pages = {1055--1058},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {19-20},
doi = {10.1016/j.crma.2010.09.015},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.09.015/}
}
TY - JOUR AU - Henderson, Anthony TI - Exterior powers of the reflection representation in the cohomology of Springer fibres JO - Comptes Rendus. Mathématique PY - 2010 SP - 1055 EP - 1058 VL - 348 IS - 19-20 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.09.015/ DO - 10.1016/j.crma.2010.09.015 LA - en ID - CRMATH_2010__348_19-20_1055_0 ER -
%0 Journal Article %A Henderson, Anthony %T Exterior powers of the reflection representation in the cohomology of Springer fibres %J Comptes Rendus. Mathématique %D 2010 %P 1055-1058 %V 348 %N 19-20 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.09.015/ %R 10.1016/j.crma.2010.09.015 %G en %F CRMATH_2010__348_19-20_1055_0
Henderson, Anthony. Exterior powers of the reflection representation in the cohomology of Springer fibres. Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1055-1058. doi: 10.1016/j.crma.2010.09.015
[1] A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math., Volume 41 (1977), pp. 113-127
[2] Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995
[3] On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A, Volume 49 (1990) no. 3, pp. 449-485
[4] An induction theorem for Springer's representations, Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253-259
[5] Geometry of orbits and Springer correspondence, Orbites unipotentes et représentations, I, Astérisque, vol. 168, Soc. Math. de France, Paris, 1988, pp. 61-140
[6] Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64
[7] Exterior powers of the reflection representation in Springer theory | arXiv
[8] The adjoint representation in rings of functions, Represent. Theory, Volume 1 (1997), pp. 182-189
[9] On the reflection representation in Springer's theory, Comment. Math. Helv., Volume 66 (1991) no. 4, pp. 618-636
[10] Invariants of finite reflection groups, Canad. J. Math., Volume 12 (1960), pp. 616-618
Cité par Sources :





