[An infinitesimal Torelli theorem with twisted coefficients]
Accepted:
Published online:
Mégy, Damien 1
@article{CRMATH_2010__348_15-16_911_0,
author = {M\'egy, Damien},
title = {Un th\'eor\`eme de {Torelli} infinit\'esimal \`a coefficients},
journal = {Comptes Rendus. Math\'ematique},
pages = {911--913},
publisher = {Elsevier},
volume = {348},
number = {15-16},
year = {2010},
doi = {10.1016/j.crma.2010.07.013},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.07.013/}
}
TY - JOUR AU - Mégy, Damien TI - Un théorème de Torelli infinitésimal à coefficients JO - Comptes Rendus. Mathématique PY - 2010 SP - 911 EP - 913 VL - 348 IS - 15-16 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.07.013/ DO - 10.1016/j.crma.2010.07.013 LA - fr ID - CRMATH_2010__348_15-16_911_0 ER -
Mégy, Damien. Un théorème de Torelli infinitésimal à coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 911-913. doi: 10.1016/j.crma.2010.07.013
[1] The period map for hypersurface sections of high degre of an arbitrary variety, Compos. Math., Volume 55 (1985) no. 2, pp. 135-156
[2] Periods of integrals on algebraic manifolds, II. Local study of the period mapping, Amer. J. Math., Volume 90 (1968), pp. 805-865
[3] On the periods of certain rational integrals, I, Ann. of Math., Volume 90 (1969), pp. 460-495
[4] Higgs bundles and local systems, Publ. Math. IHES, Volume 75 (1992), pp. 5-95
[5] Hodge theory with degenerating coefficients: -cohomology in the Poincaré metric, Ann. of Math., Volume 109 (1979), pp. 415-476
Cited by Sources:





