In this Note we give a description of the continuous spectrum of the linearized Euler equations in three dimensions. Namely, for all but countably many times , the continuous spectrum of the evolution operator is given by a solid annulus with radii and , where μ and M are the smallest and largest, respectively, Lyapunov exponents of the corresponding bicharacteristic-amplitude system of ODEs.
On donne dans cette Note une description du spectre continu de l'équation d'Euler linearisée en dimension 3. Précisément, pour presque tout , le spectre continu de l'opérateur d'évolution est constitué d'un anneau de rayons et , où μ et M sont, respectivement, le plus petit et le plus grand exposant de Lyapunov du système d'EDO bicaractéristique-amplitude associé.
Accepted:
Published online:
Shvydkoy, Roman 1
@article{CRMATH_2010__348_15-16_897_0,
author = {Shvydkoy, Roman},
title = {Continuous spectrum of the {3D} {Euler} equation is a solid annulus},
journal = {Comptes Rendus. Math\'ematique},
pages = {897--900},
publisher = {Elsevier},
volume = {348},
number = {15-16},
year = {2010},
doi = {10.1016/j.crma.2010.07.009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.07.009/}
}
TY - JOUR AU - Shvydkoy, Roman TI - Continuous spectrum of the 3D Euler equation is a solid annulus JO - Comptes Rendus. Mathématique PY - 2010 SP - 897 EP - 900 VL - 348 IS - 15-16 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.07.009/ DO - 10.1016/j.crma.2010.07.009 LA - en ID - CRMATH_2010__348_15-16_897_0 ER -
%0 Journal Article %A Shvydkoy, Roman %T Continuous spectrum of the 3D Euler equation is a solid annulus %J Comptes Rendus. Mathématique %D 2010 %P 897-900 %V 348 %N 15-16 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.07.009/ %R 10.1016/j.crma.2010.07.009 %G en %F CRMATH_2010__348_15-16_897_0
Shvydkoy, Roman. Continuous spectrum of the 3D Euler equation is a solid annulus. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 897-900. doi: 10.1016/j.crma.2010.07.009
[1] Three-dimensional instability of elliptical flow, Phys. Rev. Lett., Volume 57 (1986) no. 17, pp. 2160-2163
[2] On the spectral theory of elliptic differential operators. I, Math. Ann., Volume 142 (1960/1961), pp. 22-130
[3] Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., Volume 66 (1991) no. 17, pp. 2204-2206
[4] Linear stability in an ideal incompressible fluid, Comm. Math. Phys., Volume 233 (2003) no. 3, pp. 439-461
[5] Local stability conditions in fluid dynamics, Phys. Fluids A, Volume 3 (1991) no. 11, pp. 2644-2651
[6] The radius of the essential spectrum, Duke Math. J., Volume 37 (1970), pp. 473-478
[7] Subcritical transition to turbulence in plane channel flows, Phys. Rev. Lett., Volume 45 (1980), pp. 989-993
[8] Universal short-wave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., Volume 57 (1986), pp. 2157-2159
[9] A spectral theory for linear differential systems, J. Differential Equations, Volume 27 (1978) no. 3, pp. 320-358
[10] The essential spectrum of advective equations, Comm. Math. Phys., Volume 265 (2006) no. 2, pp. 507-545
[11] The essential spectrum of the linearized 2D Euler operator is a vertical band, Birmingham, AL, 2002 (Contemp. Math.), Volume vol. 327, Amer. Math. Soc., Providence, RI (2003), pp. 299-304
[12] Operator algebras and the Fredholm spectrum of advective equations of linear hydrodynamics, J. Funct. Anal., Volume 257 (2009), pp. 3309-3328
[13] The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, NJ, 1951
[14] Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. (9), Volume 75 (1996) no. 6, pp. 531-557
Cited by Sources:





