[Une démonstration simple en variables réelles de la propriété d'isométrie de la transformation de Hilbert H]
The Hilbert transform H can be extended to an isometry of . We prove this fact working directly on the principal value integral, completely avoiding the use of the Fourier transform and the use of orthogonal systems of functions. Our approach here is a byproduct of our attempts to understand the rearrangement properties of H.
La transformation de Hilbert H peut être étendue à une isometrie dans . On demontre cette propriété en utilsant directement la valeur principale de l'intégrale, sans utiliser la transformation de Fourier, ni des systèmes de fonctions orthogonales. L'approche proposée est liée à nos tentative de comprendre le proprietés de réarrangement de H.
Accepté le :
Publié le :
Laeng, Enrico 1
@article{CRMATH_2010__348_17-18_977_0,
author = {Laeng, Enrico},
title = {A simple real-variable proof that the {Hilbert} transform is an $ {L}^{2}$-isometry},
journal = {Comptes Rendus. Math\'ematique},
pages = {977--980},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {17-18},
doi = {10.1016/j.crma.2010.07.002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.07.002/}
}
TY - JOUR
AU - Laeng, Enrico
TI - A simple real-variable proof that the Hilbert transform is an $ {L}^{2}$-isometry
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 977
EP - 980
VL - 348
IS - 17-18
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.07.002/
DO - 10.1016/j.crma.2010.07.002
LA - en
ID - CRMATH_2010__348_17-18_977_0
ER -
%0 Journal Article
%A Laeng, Enrico
%T A simple real-variable proof that the Hilbert transform is an $ {L}^{2}$-isometry
%J Comptes Rendus. Mathématique
%D 2010
%P 977-980
%V 348
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.07.002/
%R 10.1016/j.crma.2010.07.002
%G en
%F CRMATH_2010__348_17-18_977_0
Laeng, Enrico. A simple real-variable proof that the Hilbert transform is an $ {L}^{2}$-isometry. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 977-980. doi: 10.1016/j.crma.2010.07.002
[1] Some sharp inequalities for conjugate functions, Indiana University Mathematics Journal, Volume 27 (1978) no. 5, pp. 833-852
[2] Variations on a theme of Boole and Stein–Weiss, Journal of Mathematical Analysis and Applications, Volume 363 (2010), pp. 225-229
[3] The Hilbert transform and Hermite functions: A real variable proof of the -isometry, Journal of Mathematical Analysis and Applications, Volume 347 (2008), pp. 592-596
[4] Sharp -estimates for the segment multiplier, Collectanea Mathematica, Volume 51 (2000) no. 3, pp. 309-326
Cité par Sources :





