[Décomposition des applications unimodulaires dans les espaces de Sobolev]
Let , , be such that . We prove that for each map one can find and such that . This yields a decomposition of u into a part that has a lifting in , , and a map “smoother” than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case , ). As a consequence, we find an intuitive proof for the existence of the distributional Jacobian Ju of maps (originally due to Bourgain, Brezis and the author). By completing a result of Bousquet, we characterize the distributions of the form Ju.
Soient , , tels que . Nous montrons que, pour chaque , il existe et tels que . Ceci donne une décomposition de u comme produit d'un facteur qui se relève dans , , et d'un facteur « plus régulier » que u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de Bourgain et Brezis (qui ont traité le cas , ). Une conséquence de notre résultat est une preuve intuitive de l'existence du jacobien au sens des distributions Ju pour les applications (résultat dû, avec un argument différent, à Bourgain, Brezis et l'auteur). En complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju.
Accepté le :
Publié le :
Mironescu, Petru 1
@article{CRMATH_2010__348_13-14_743_0,
author = {Mironescu, Petru},
title = {Decomposition of $ {\mathbb{S}}^{1}$-valued maps in {Sobolev} spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {743--746},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {13-14},
doi = {10.1016/j.crma.2010.06.020},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.06.020/}
}
TY - JOUR
AU - Mironescu, Petru
TI - Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 743
EP - 746
VL - 348
IS - 13-14
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.06.020/
DO - 10.1016/j.crma.2010.06.020
LA - en
ID - CRMATH_2010__348_13-14_743_0
ER -
%0 Journal Article
%A Mironescu, Petru
%T Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2010
%P 743-746
%V 348
%N 13-14
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.06.020/
%R 10.1016/j.crma.2010.06.020
%G en
%F CRMATH_2010__348_13-14_743_0
Mironescu, Petru. Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces. Comptes Rendus. Mathématique, Tome 348 (2010) no. 13-14, pp. 743-746. doi: 10.1016/j.crma.2010.06.020
[1] Functions with prescribed singularities, J. Eur. Math. Soc., Volume 5 (2003) no. 3, pp. 275-311
[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403
[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[4] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426
[5] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86
[6] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 1-115
[7] Topological singularities in , J. Anal. Math., Volume 102 (2007), pp. 311-346
[8] P. Bousquet, P. Mironescu, in preparation
[9] Harmonic maps with defects, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705
[10] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001), pp. 387-404
[11] -maps with values into (Chanillo, S.; Cordaro, P.D.; Hanges, N.; Hounie, J.; Meziani, A., eds.), Geometric Analysis of PDE and Several Complex Variables, Contemporary Mathematics, vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100
[12] Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002), pp. 645-677
[13] An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ., Volume 2 (2002) no. 1, pp. 113-125
[14] Lifting default for -valued maps, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 19–20, pp. 1039-1044
[15] -valued Sobolev maps http://math.univ-lyon1.fr/~mironescu/7.pdf
[16] P. Mironescu, Sobolev spaces of circle-valued maps, in preparation
[17] Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, vol. 130, Springer-Verlag New York, Inc., New York, 1966
[18] Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 17–18, pp. 957-962
[19] The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat. Zh., Volume 9 (1968), pp. 1386-1394
Cité par Sources :





