[Trou spectral dans ]
It is shown that if are algebraic elements in generating a dense subgroup, then the corresponding Hecke operator has a spectral gap.
On démontre que si sont des éléments algébriques de et le groupe engendré par est dense, alors l'opérateur de Hecke défini par ces éléments a un trou spectral.
Accepté le :
Publié le :
Bourgain, Jean 1 ; Gamburd, Alexander 2
@article{CRMATH_2010__348_11-12_609_0,
author = {Bourgain, Jean and Gamburd, Alexander},
title = {Spectral gaps in $ \mathit{SU}(d)$},
journal = {Comptes Rendus. Math\'ematique},
pages = {609--611},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {11-12},
doi = {10.1016/j.crma.2010.04.024},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.04.024/}
}
TY - JOUR
AU - Bourgain, Jean
AU - Gamburd, Alexander
TI - Spectral gaps in $ \mathit{SU}(d)$
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 609
EP - 611
VL - 348
IS - 11-12
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.04.024/
DO - 10.1016/j.crma.2010.04.024
LA - en
ID - CRMATH_2010__348_11-12_609_0
ER -
%0 Journal Article
%A Bourgain, Jean
%A Gamburd, Alexander
%T Spectral gaps in $ \mathit{SU}(d)$
%J Comptes Rendus. Mathématique
%D 2010
%P 609-611
%V 348
%N 11-12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.04.024/
%R 10.1016/j.crma.2010.04.024
%G en
%F CRMATH_2010__348_11-12_609_0
Bourgain, Jean; Gamburd, Alexander. Spectral gaps in $ \mathit{SU}(d)$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 11-12, pp. 609-611. doi: 10.1016/j.crma.2010.04.024
[1] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[2] On the Erdos–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 334-365
[3] J. Bourgain, The discretized ring and projection theorems, J. Anal., in press
[4] On the spectral gap for finitely generated subgroups of , Invent. Math., Volume 171 (2008) no. 1, pp. 83-121
[5] Expansion and random walks in , II, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 5, pp. 1057-1103
[6] On dense free subgroups of Lie groups, J. Algebra, Volume 261 (2003) no. 2, pp. 448-467
[7] Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, 2006
Cité par Sources :





