We construct a mod 2 analogue of the Witten genus for dimensional spin manifolds, as well as modular characteristic numbers for a class of manifolds which we call manifolds. When these manifolds are actually spin, one recovers the original Witten genus on string manifolds. These genera vanish on string and complete intersections respectively in complex projective spaces.
Nous construisons un analogue du genre de Witten pour les variétés spins de dimension . Nous construisons aussi des nombres caractéristiques modulaires sur une classe de variétés , qu'on appelle variétés . Si les variétés sont spin, on retrouve le genre de Witten sur les variétés cordes. Ces genres sont nuls sur les intersections complètes correspondantes dans les espaces projectives complexes.
Accepted:
Published online:
@article{CRMATH_2010__348_5-6_295_0, author = {Chen, Qingtao and Han, Fei and Zhang, Weiping}, title = {Witten genus and vanishing results on complete intersections}, journal = {Comptes Rendus. Math\'ematique}, pages = {295--298}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.02.005}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2010.02.005/} }
TY - JOUR AU - Chen, Qingtao AU - Han, Fei AU - Zhang, Weiping TI - Witten genus and vanishing results on complete intersections JO - Comptes Rendus. Mathématique PY - 2010 SP - 295 EP - 298 VL - 348 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.02.005/ DO - 10.1016/j.crma.2010.02.005 LA - en ID - CRMATH_2010__348_5-6_295_0 ER -
%0 Journal Article %A Chen, Qingtao %A Han, Fei %A Zhang, Weiping %T Witten genus and vanishing results on complete intersections %J Comptes Rendus. Mathématique %D 2010 %P 295-298 %V 348 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.02.005/ %R 10.1016/j.crma.2010.02.005 %G en %F CRMATH_2010__348_5-6_295_0
Chen, Qingtao; Han, Fei; Zhang, Weiping. Witten genus and vanishing results on complete intersections. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 295-298. doi : 10.1016/j.crma.2010.02.005. https://www.numdam.org/articles/10.1016/j.crma.2010.02.005/
[1] Riemann–Roch theorem for differentiable manifolds, Bull. Amer. Math. Soc., Volume 65 (1959), pp. 276-281
[2] The index of elliptic operators V, Ann. of Math., Volume 93 (1971), pp. 139-149
[3] Elliptic Functions, Springer-Verlag, 1985
[4] Q. Chen, F. Han, W. Zhang, Generalized Witten genus and vanishing theorems, Preprint
[5] Modular invariance, characteristic numbers and η-invariants, J. Differential Geom., Volume 67 (2004), pp. 257-288
[6] Manifolds and Modular Forms, Aspects Math., vol. E20, Vieweg, Braunschweig, 1992
[7] On modular invariance and rigidity theorems, J. Differential Geom., Volume 41 (1995), pp. 343-396
[8] Orientation and string structures on loop spaces, Pacific J. Math., Volume 155 (1992), pp. 143-156
[9] The index of the Dirac operator in loop space (Lanweber, P.S., ed.), Elliptic Curves and Modular forms in Algebraic Topology, Lecture Notes in Math., vol. 1326, Springer, 1988
[10] -manifolds and Rokhlin congruences, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 689-692
[11] Cobordism and Rokhlin congruences, Acta Math. Sci., Volume 29B (2009), pp. 609-612
Cited by Sources: