[Les identités de Ghirlanda–Guerra pour les mélanges de modèles à p-spin]
We show that, under the conditions known to imply the validity of the Parisi formula, if the generic Sherrington–Kirkpatrick Hamiltonian contains a p-spin term then the Ghirlanda–Guerra identities for the pth power of the overlap hold in a strong sense without averaging. This implies strong version of the extended Ghirlanda–Guerra identities for mixed p-spin models than contain terms for all even and .
Nous montrons que sous les conditions connues pour impliquer la validité de la formule de Parisi, si l'Hamiltonien du modè le générique de Sherrington–Kirkpatrick Hamiltonien contient un « Hamiltonien de p-spin » alors les identités de Ghirlanda–Guerra pour la puissance p des recouvrements sont valides dans un sens fort (et pas seulement en moyenne sur les parametres).
Accepté le :
Publié le :
Panchenko, Dmitry 1
@article{CRMATH_2010__348_3-4_189_0,
author = {Panchenko, Dmitry},
title = {The {Ghirlanda{\textendash}Guerra} identities for mixed \protect\emph{p}-spin model},
journal = {Comptes Rendus. Math\'ematique},
pages = {189--192},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {3-4},
doi = {10.1016/j.crma.2010.02.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.02.004/}
}
TY - JOUR AU - Panchenko, Dmitry TI - The Ghirlanda–Guerra identities for mixed p-spin model JO - Comptes Rendus. Mathématique PY - 2010 SP - 189 EP - 192 VL - 348 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.02.004/ DO - 10.1016/j.crma.2010.02.004 LA - en ID - CRMATH_2010__348_3-4_189_0 ER -
%0 Journal Article %A Panchenko, Dmitry %T The Ghirlanda–Guerra identities for mixed p-spin model %J Comptes Rendus. Mathématique %D 2010 %P 189-192 %V 348 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.02.004/ %R 10.1016/j.crma.2010.02.004 %G en %F CRMATH_2010__348_3-4_189_0
Panchenko, Dmitry. The Ghirlanda–Guerra identities for mixed p-spin model. Comptes Rendus. Mathématique, Tome 348 (2010) no. 3-4, pp. 189-192. doi: 10.1016/j.crma.2010.02.004
[1] The Ghirlanda–Guerra identities without averaging, 2009 (preprint) | arXiv
[2] General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A, Volume 31 (1998) no. 46, pp. 9149-9155
[3] On differentiability of the Parisi formula, Electron. Comm. Probab., Volume 13 (2008), pp. 241-247
[4] A sequence of approximate solutions to the S-K model for spin glasses, J. Phys. A, Volume 13 (1980), p. L-115
[5] Parisi measures, J. Funct. Anal., Volume 231 (2006) no. 2, pp. 269-286
[6] Parisi formula, Ann. of Math. (2), Volume 163 (2006) no. 1, pp. 221-263
[7] M. Talagrand, Construction of pure states in mean-field models for spin glasses, preprint (2008), Probab. Theory Related Fields, in press, http://www.springerlink.com/content/y507332m08275t67/?p=d35ca639b02943ecae07559b26ef2abf&pi=10
[8] M. Talagrand, Mean field models for spin glasses, manuscript
Cité par Sources :





