[Sur une modification Hölder covariante de la dimension moyenne]
Let Γ be a infinite countable group which acts naturally on . We introduce a modification of mean dimension which is an obstruction for and to be Hölder conjugates.
Soit Γ un groupe dénombrable infini qui agit naturellement sur . Nous introduisons une obstruction, proche de la dimension moyenne, au fait que et soit Hölder conjugués.
Accepté le :
Publié le :
Gournay, Antoine 1
@article{CRMATH_2009__347_23-24_1389_0,
author = {Gournay, Antoine},
title = {On a {H\"older} covariant version of mean dimension},
journal = {Comptes Rendus. Math\'ematique},
pages = {1389--1392},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {23-24},
doi = {10.1016/j.crma.2009.10.014},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.10.014/}
}
TY - JOUR AU - Gournay, Antoine TI - On a Hölder covariant version of mean dimension JO - Comptes Rendus. Mathématique PY - 2009 SP - 1389 EP - 1392 VL - 347 IS - 23-24 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.10.014/ DO - 10.1016/j.crma.2009.10.014 LA - en ID - CRMATH_2009__347_23-24_1389_0 ER -
%0 Journal Article %A Gournay, Antoine %T On a Hölder covariant version of mean dimension %J Comptes Rendus. Mathématique %D 2009 %P 1389-1392 %V 347 %N 23-24 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.10.014/ %R 10.1016/j.crma.2009.10.014 %G en %F CRMATH_2009__347_23-24_1389_0
Gournay, Antoine. On a Hölder covariant version of mean dimension. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1389-1392. doi: 10.1016/j.crma.2009.10.014
[1] Geometric Nonlinear Functional Analysis, vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000
[2] Width of balls, 2008 (or p. 16; Houston J. Math., in press) | arXiv | HAL
[3] Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., Volume 2 (1999) no. 4, pp. 323-415
[4] Mean topological dimension, Israel J. Math., Volume 115 (2000), pp. 1-24
[5] Macroscopic dimension of the -ball with respect to the -norm, J. Math. Kyoto Univ., Volume 48 (2008) no. 2, pp. 445-454
Cité par Sources :





