[Décompositions en sommes de deux polynômes irréductibles dans ]
A monic polynomial in of degree n over a finite field of odd characteristic is the sum of two monic irreducibles in of degrees n and , provided q is larger than an explicitly given bound in terms of n.
Un polynôme unitaire de degré n à coefficients dans un corps fini de caractéristique différente de 2 s'écrit comme une somme , où sont des polynômes unitaires irréductibles de degrés n et , dès que q est plus grand qu'une borne explicite dépendant uniquement de n.
Accepté le :
Publié le :
Bender, Andreas O. 1
@article{CRMATH_2008__346_17-18_931_0,
author = {Bender, Andreas O.},
title = {Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$},
journal = {Comptes Rendus. Math\'ematique},
pages = {931--934},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {17-18},
doi = {10.1016/j.crma.2008.07.025},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.07.025/}
}
TY - JOUR
AU - Bender, Andreas O.
TI - Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$
JO - Comptes Rendus. Mathématique
PY - 2008
SP - 931
EP - 934
VL - 346
IS - 17-18
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2008.07.025/
DO - 10.1016/j.crma.2008.07.025
LA - en
ID - CRMATH_2008__346_17-18_931_0
ER -
%0 Journal Article
%A Bender, Andreas O.
%T Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$
%J Comptes Rendus. Mathématique
%D 2008
%P 931-934
%V 346
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2008.07.025/
%R 10.1016/j.crma.2008.07.025
%G en
%F CRMATH_2008__346_17-18_931_0
Bender, Andreas O. Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 931-934. doi: 10.1016/j.crma.2008.07.025
[1] A.O. Bender, Representing an element in as the sum of two irreducibles in , submitted for publication
[2] A potential analogue of Schinzel's hypothesis for polynomials with coefficients in , Int. Math. Res. Not., Volume 36 (2005), pp. 2237-2248 (also available from) | arXiv
[3] Additive Number Theory of Polynomials Over a Finite Field, Oxford University Press, New York, NY, 1991
[4] Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, NY, 1995
[5] Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891), pp. 1-61 (and Math. Werke, Band 1/XXI, Birkhäuser, Basel, 1932)
Cité par Sources :





